Properties and clinical application of zirconia bioceramics in medicine

  • Čedomir Oblak Katedra za stomatološko protetiko Medicinska fakulteta Vrazov trg 2 1000 Ljubljana Univerzitetni klinični center Ljubljana Stomatološka klinika Hrvatski trg 6 1000 Ljubljana
  • Peter Jevnikar Katedra za stomatološko protetiko Medicinska fakulteta Vrazov trg 2 1000 Ljubljana Univerzitetni klinični center Ljubljana Stomatološka klinika Hrvatski trg 6 1000 Ljubljana
  • Tomaž Kosmač Inštitut Jožef Stefan Odsek za inženirsko keramiko Jamova 39 1000 Ljubljana
Keywords: bio-ceramics, zirconia ceramic, biocompatibility, ageing, clinical application

Abstract

Background: A group of inorganic non-metal biomaterials, that are commonly used in clinical medicine to replace or repair tissues, can be classified as a bioceramics. This group includes bioactive glasses, glass-ceramics, hydroxy-apatite and some other calcium phosphates. In addition, some bio-inert engineering ceramics materials have become increasingly utilised, aluminum oxide, zirconium oxide and their composites being the most popular. With the developement of yttria stabilized tetragonal zirconium oxide ceramics (Y-TZP) medical community received a high strength biomaterial that is currently a material of choice for the manufacturing of medical devices. Y-TZP ceramics is becoming also increasingly used in dental medicine, where frameworks are manufactured by the use of computer-assisted technology.

Conclusions: The article describes the basic properties of zirconia oxide ceramics important for the use in clinical medicine; high strength and fracture toughness, biocompatibility and negligible radiation. The ageing issue of this particular material, which is attributable to the thermo-dynamical instability of tetragonal zirconium oxide in hydrothermal conditions, is also discussed. When exposed to an aqueous environment over long periods of time, the surface of the Y-TZP ceramic will start transforming spontaneously into the monoclinic structure. The mechanism leading to the t-m transformation is temperature-dependent and is accompanied by extensive micro-cracking, which ultimately leads to strength degradation. The degradation might influence the clinical success rate of medical devices and therefore Y-TZP femoral heads are no longer made of pure zirconium oxide. Composites of zirconium and aluminium oxides are used instead, that are currently the strongest ceramic materials used in clinical medicine. In this work the clinical application of zirconia oxide ceramics in dental medicine is also presented. Conventional porcelain fused to metal technique is successfully replaced with Y-TZP ceramics in some clinical situations that are described in detail. It is important that computer design of the zirconia frameworks shortens and simplifies laboratory procedures and contributes to a precise final product.

Downloads

Download data is not yet available.

References

Helmer JD, Driskell TD. Research on bioceramics. Symposium on use of ceramics as surgical implants. Clemson University, South Carolina, 1969.

McLean JW. Evolution of dental ceramics in the twentieth century. J Prosthet Dent 2001; 85(1): 61–6.

Kappert HF. Dental materials: New ceramic systems. Academy of dental materials Proceedings Transactions 1996; 9: 180–99.

Garvie RC, Hannink RH, Pascoe RT. Ceramic steel? Nature 1975; 258: 703–4.

Gupta TK, Bechtold JH, Kuznickie RC, Cadoff LH, Rossing BR. Stabilisation of tetragonal phase in polycrystalline zirconia. J Mat Sci 1977; 12: 2421–8.

Stevens R. Zirconia and zirconia ceramics. 2nd ed. New Jersey 1986: Magnesium Elektron Ltd.

Kosmač T, Oblak Č, Jevnikar P, Funduk N, Marion L. The effect of grinding and sandblasting on flexural strength and reliability of Y-TZP zirconia ceramic. Dent Mater 1999; 15: 426–33.

Kosmač T, Oblak Č, Jevnikar P, Funduk N, Marion L. Strength and Reliabiliy of Surface Treated Y-TZP Dental Ceramics. J Biomed Mater Res 2000; 53: 304–13.

Essner A, Sutton K, Wang A. Hip simulator wear comparison of metal-on-metal, ceramic-on-ceramic and cross-linked UHMWPE bearings. Wear 2005; 259: 992–5.

Christel P. Zirconia: the second generation of ceramics for total hip replacement. Bull Hosp Joint Dis Orthop Inst 1989; 49: 170–7.

Milošev I, Trebše R, Marjanovič B, Kovač S. Umetni kolčni sklepi z obremenilnim sklopom keramika-na-keramiko. Zdrav Vestn Supl 2009; 78: 43–51.

Rieger W. Medical Applications of Ceramics. In: High Tech Ceramics: Viewpoints and Perspectives. Kostorz,G., ed. Academic Press, 1989, 191–228.

Thompson I, Rawlings RD. Mechanical behaviour of zirconia and zirconia-toughened alumina in simulated body environment. Biomater 1990; 11: 505–8.

Clarke IC, J Clarke IC, Manaka M, Green DD, Williams P, Pezzotti G, Kim YH, Ries M, Sugano N. Current status of zirconia used in total hip implants. Bone Joint Surg Am 2003; 85A: 73–84.

Meyeberg KH, Luthy H, Scharer P. Zirconium post. A new all-ceramic concept for nonvital abutment teeth. J Esthet Dent 1995; 7: 73–80.

Hochman N, Zalkind M. New all-ceramic indirect post-and-core system. J Prosthet Dent 1999; 81: 625–9.

Oblak Č, Jevnikar P, Kosmac T, Funduk N, Marion L. Fracture resistance and reliability of new zirconia posts. J Prosthet Dent 2004; 91: 342–8.

Grošelj D, Rener-Sitar K, Kukovič A, Grošelj H. Računalniško vodeno predoperativno načrtovanje in vsaditev zobnih implantatov. Zdrav Vestn 2007; 76: 335–43.

Wohlwend A, Studer S, Schärer P. The zirconium oxide abutment: An all-ceramic abutment for the esthetic improvement of implant superstructures. Quint Dent Tech 1997; 1: 63–74.

Glauser R, Zembic , Wohlwend A, Hämmerle C, Schärer P. 4-year clinical results of an experimental zirconia abutment. J Dent Res 2002; 81: abstract 3163.

Glauser R, Sailer I, Wohlwend A, Studer S, Schibli M, Schärer P. Experimental zirconia abutments for implant-supported single-tooth restorations in esthetically demanding regions: 4-year results of a prospective clinical study. Int J Prosthodont 2004; 17(3): 285–90.

Yildirim M, Edelhoff D, Hanisch O, H. Spiekermann H. Ceramic abutments—a new era in achieving optimal esthetics in implant dentistry. Int J Periodontics Restor Dent 2000; 20: 81–91.

Chevalier J. What future for zirconia as a biomaterial? Biomater 2006; 27: 535–43.

Parker RM. Use of Zirconia in restorative dentistry. Dent Today 2007; 26: 112–9.

Yildirim M, Fischer H, Marx R, Edelhoff D. In vivo fracture resistance of implant-supported all-ceramic restorations. J Prosthet Dent 2003; 90: 325–31.

Brodbeck U. The ZiReal post: a new ceramic implant abutment. J Esthet Restor Dent 2003; 15: 10–23.

Rimondini L, Cerroni L, Carrassi A, Torrincelli P. Bacterial colonization of zirconia ceramic surfaces: an in vitro and in vivo study. Int J Oral Maxillofac Implants 2002; 17: 793–8.

Scarano A, Piattelli M, Caputi S, Favero GA, Piattelli A. Bacterial adhesion on commercialy pure titanium and zirconium oxide disks: an in vivo human study. J Periodontol 2004; 75: 292–6.

Liu JK, Chung CH, Chang CY, Shieh DB. Bond strength and debonding characteristics of a new ceramic bracket. Am J Ortho Dentofacial Orthop 2005; 128: 761–5.

Schulte W. The intra-osseus Al2O3 (Frialit) Tuebingen Implant. Developmental status after eight years. Qintessence Int 1984; 15: 1–39.

Schulte W, Hoedt B. 13 years of the Tuebingen implantat system made by Frialit –additional results. Z Zahnärztl Implantol 1988; 3: 167–72.

Haubenreich JE, Robinson FG, West KP, Frazer RQ. Did we push dental ceramic too far? A brief history of ceramic dental implants. J Long Term Eff Med Implants 2005; 15: 617–28.

Kohal RJ, Papavasiliou G, Kamposiora P, Tripodakis A, Strub JR. Three-dimensional computerized stress analysis of commercially pure titanium and yttrium-partially stabilized zirconia implants. Int J Prosthodont 2002; 15: 189–94.

Kohal RJ, Klaus G. A zirconia implant-crown system:a case report. Int J Restor Dent 2004; 24: 147–53.

Sennerby L, Dasmah A, LarssonB, Iverhed M. Bone tissue responses to surface-modified zirconia implants: a histomorphometric and removal torque study in the rabbit. Clin Impl Dent Related Res 2005; 7: 13–20.

Albrektsson T, Hansson HA, Ivarsson B. Interface analysis of titanium and zirconium bone implants. Biomaterials 1985; 6: 97–101.

Piconi C, Maccauro G. Zirconia as a ceramic biomaterial. Biomater 1999; 20: 1–25.

Silva VV, Lameiras FS, Lobato ZI. Biological reactivity of zirconia-hydroxyapatite composites. J Biomed Mater Res 2002; 63: 583–90.

Bächle M, Butz F, Hübner U, Bakalinis E, Kohal RJ. Behavior of CAL72 osteoblast-like cells cultured on zirconia ceramics with different surface topographies. Clin Oral Implants Res 2007; 18: 53–9.

Blaschke C, Volz U. Soft and hard tissue response to zirconium dioxide dental implants – a clinical study in man. Neuro Endocrinol Lett 2006; 27: 69–72.

Kohal RJ, Knauf M, Larsson B, Sahlin H, Butz F. One-piece zirconia oral implants: one-year results from a prospective cohort study. 1. Single tooth replacement. J Clin Periodontol 2012; 39(6): 590–7.

Hulbert SF, Morrison SJ, Klawitter JJ. Tisue reaction to three ceramics of porous and non-porous structure. J Biomed Mater Res 1972; 6: 347–74.

Picconi C, Maccauro G, Muratori E, Brach del Prever E. Alumina and zirconia ceramics in joint replacements:a review. J Appl Biomat Biomech 2003; 1: 19–32.

Piconi C, Burges W, Richter W. Y-TZP ceramics for artificial joint replacements. Biomaterials 1998; 19: 1489–94.

Fujita M. In vitro study on biocompatibility of zirconium and titanium. J Stom Soc 1993; 60: 54–65.

Ichikawa Y, Akagawa Y, Nikai H, Tsuru H. Tisue compatibility and stability of a new zirconia ceramic in vivo. J Prosthet Dent 1992; 68: 322–6.

Schadel A, Thun G, Stork L, Metzler R. Immunodiffusion and immunohistochemical investigations on reactivity of oxide ceramic middle-ear implants. J Oto Rhino Lar 1993; 55: 216–21.

Akagawa Y, Hosokawa R, Sato Y, et al. Comparison between freestanding and tooth-connected partially stabilized zirconia implants after two years function in monkeys: A clinical and histologic study. J Prosthet Dent 1998; 80: 551–8.

Akagawa Y, Ichikawa Y, Nikai H, et al. Interface histology of unloaded and early loaded partially stabilized zirconia endosseous implant in initial bone healing. J Prosthet Dent 1993; 69: 599–604.

Griss P. Andrian-Werburg HF, Griss P, Krempien B, Heimke G. Clinical problems and experimental morphologic results using ceramic materials in orthopedics and traumatology. Z Orthop Ihre Grenzgeb 1973; 111(4): 577–9.

Ghosh S, Sharama A, Talukder G. Zirconium-an abnormal trace element in biology. Biol Trace E Res 1992; 35: 247–71.

Bartter T, Irwin RS, Abraham JL, Dascal A, Nash G, Himmelstein JS, Jederlinc PJ. Zirconium compound-induced pulmonary fibrosis. Arch Int Med 1991; 151: 1197–201.

Kobayashi K, Kuwajima H, Masaki T. Phase change and mechanical properties of ZrO2-Y2O3 solid state electrolite after ageing. Solid State Ion 1981; 3: 489–95.

Lawson S. Environmental degradation of Zirconia Ceramics. J Eur Ceram Soc 1995; 15: 485–502.

Kosmač T, Andrzejezuk M, Kurzydlowski KJ. The mechanical properties and hydrothermal stability of porous, partially sintered Y-TZP ceramics. In: Wereszczak (ed), Lara-Curzio E (ed). Proceedings of the 30th International Conference on Advanced Ceramics and Composites: Jannuary 22–27, 2006 Cocoa Beach, Florida: The American Ceramic Society, 2007, 10 pages.

Kosmač T, Kocjan A. Ageing of dental zirconia ceramics. J Euro Ceram Soc 2012; 32: 2613–22.

Kosmač T, Oblak Č, Marion L. The effects of dental grinding and sandblasting on ageing and fatigue behaviour of dental zirconia (Y-TZP) ceramics. J Eur Ceram Soc 2008; 28: 1085–90.

Kim JW, Covel NS, Guess PC, Rekow ED, Zhang Y.Concerns of hydrothermal degradation in CAD/CAM zirconia. J Dent Res 2010; 89: 91–5.

Deville S, Chevalier J, Gremillard L. Influence of surface finish and residual stresses on the ageing sensitivity of biomedical grade zirconia. Biomaterials 2006; 27: 2186–92.

Deville S, Chevalier J, Gremillard L, Fantozzi G. A critical comparison of methods for the determination of the aging sensitivity in biomedical grade Yttria-stabilized Zirconia. J Biomed Mater Res Part B: Appl Biomater 2005; 72B: 239–245.

Chevalier J, Gremillard L, Deville S. Low-temperature degradation of zirconia and implications for biomedical implants. Annu Rev Mater Res 2007; 37: 1–32.

Kosmač T, Jevnikar P. Ageing of Dental Zirconia in the Oral cavity: First results after Six Months. Bioceramics Proceedings. Selected Papers from 22nd International Symposium on Ceramics in Medicine. Daegu, Korea, 26–29 October 2009.

Hopf Th, Sherr O, Glöbel B, Hopf Ch. Vergleichende Tierexperimentelle Untersuchung zur Gewebsveträglichkeit und Messungen der radioaktiviät vershiedener Rötgenkontrastmittel. Z Orthop 1989; 127: 620–4.

Hopf Th, Hopf Ch, Glöbel B. About Radioactivity of some PMMA Bone Cements. Acta Orthop Bel 1990; 56: 433–4.

Piconi C, Casarci M. Purification of chemicals for the production of biomedical grade Y-TZP ceramiccs in :Applied Mineralogy. Ramaliar D, Mederer J, Oberthur RB, Petinghaus H. AA Balkema Publ Rotterdam 2000 ; 205–7.

Fischer-Brandies E, Pratzel H, Wendt T. Radioactive burden resulting from zirconia implants. Dtsch Zahnarztl Z 1999; 46(10): 688–90.

Capannesi G, Piconi C, Sedda AF, Greco, F. Radioactivity measurements of Zirconia Powders, in: Bioceramics and Human Body. Ravaglioli A, Krajewski A, Elselvier Science Publ, 1992; 211–6.

Porstendörfer J, Reineking A, Willert HC. Radiation risk estimation based on activity measurements of zirconium oxide implants. J Biomed Mater Res. 1996; 32(4): 663–7.

Cales B. Zirconia as a sliding material: histologic, laboratory, and clinical data. Clin Orthop Relat Res. 2000; 379: 94–112.

Sairenji E, Söremark R, Noguchi K, Shimizu M, Moberg LE. Uranium content in porcelain denture teeth and in porcelain powders for ceramic crowns. Acta Odontol Scand. 1982; 40(5): 333–9.

Bavbek AB, Ozcan M, Eskitascioglu G. Radioactive potential of zirconium-dioxide used for dental applications. J Appl Biomater Function Mater. V tisku 2013.

Luthardt RG, Holzhüter MS, Rudolph H, Herold V, Walter MH. CAD/CAM-machining effects on Y-TZP zirconia. Dent Mater 2004; 20(7): 655–62.

Sadan A, Blatz M, Lang B. Clinical considerations for densely sintered alumina and zirconia restorations: Part 1. Int J Periodontics Restorative Dent 2005; 25: 213–9.

Luthardt RG, Quaas S, Rudolph H. Machinelle Herstellung von Zahnersatz. In: Tnschert J, Natt G, eds. Oxidkeramiken und CAD/CAM Technologien. Köln: Deutscher Zahnärzte Verlag; 2007: 65–94.

Moldovan O, Luthardt RG, Corcodel N, Rudolph H. Three-dimensional fit of CAD/CAM-made zirconia copings. Dent Mater 2011; 27(12): 1273–8.

Spear F, Holloway J.Which all-ceramic system is optimal for anterior esthetics? J Am Dent Assoc. 2008; 139: 19–24.

Quinn GD, Studart AR, Hebert C, VerHoef JR, Arola D Fatigue of zirconia and dental bridge geometry: Design implications. Dent Mater. 2010; 26: 1133–6.

Hench L, Wilson J. Introduction. In: An introducion to Bioceramics. World Scientific Publishing Co. Ltd, 1993; 6.

O´Brain WJ. Dental Materials and Their Selection. Chicago: Qintesessence Publishing; 2002.

How to Cite
1.
Oblak Čedomir, Jevnikar P, Kosmač T. Properties and clinical application of zirconia bioceramics in medicine. TEST ZdravVestn [Internet]. 1 [cited 15May2024];82(12). Available from: http://vestnik-dev.szd.si/index.php/ZdravVest/article/view/1031
Section
Review