Analysis of the tissue around artificial polyacetal hip stems using nuclear methods

  • Klemen Stražar Department of Orthopaedic Surgery, University Medical Centre Ljubljana, Zaloška 9, 1525 Ljubljana, Slovenia
  • Matjaž Kavčič Institute Josef Stefan, Jamova 39, 1000 Ljubljana, Slovenia
  • Žiga Šmit Institute Josef Stefan, Jamova 39, 1000 Ljubljana, Slovenia
  • Jure Simčič Institute Josef Stefan, Jamova 39, 1000 Ljubljana, Slovenia
  • Radojko Jaćimović Institute Josef Stefan, Jamova 39, 1000 Ljubljana, Slovenia
  • Andrej Cör Fakulteta za vede o zdravju, Univerza na Primorskem, Polje 42, 6310 Izola, Slovenija
  • Primož Pelicon Inštitut Jožef Stefan, Jamova 39, 1000 Ljubljana, Slovenija
  • Vane Antolič Department of Orthopaedic Surgery, University Medical Centre Ljubljana, Zaloška 9, 1525 Ljubljana, Slovenia
Keywords: isoelastic hip prosthesis, polyacetal, loosening, proton induced x-ray emission analytical method (PIXE), neutron activation analysis

Abstract

Introduction

The influence of polyacetal wear particles on aseptic loosening of non-cemented isoelastic femoral stems with polyacetal coating remains unclear. The aim of our study was to use nuclear methods to prove the presence of polyacetal wear particles, to determine their morphology and to check their distribution in the tissues around loosend hip prosthetic components.

Methods

Tissue samples obtained during retrieval of 4 aseptic loosened primary hip prostheses with isoelastic stems made of polyacetal were subjected to nuclear analyses. Proton microbrobe method (mikro-PIXE) was used to prove the presence of polyacetal wear particles and to check for their morphology by detection of barium, which is molecularly in BaSO4 embedded in polyacetal. Thermal neutron activation was used to determine distribution pattern of polyacetal wear in the peri-prosthetic tissues.

Results

Against expectations, polyacetal wear particles were found rather rare, larger than 100 µm and present in pseudo-membrane samples around the loosened stem, but virtually absent in tissues away from their origin. Concentration of BaSO4 in polyacetal wear particles in pseudo-membrane samples was similar to the one in polyacetal coating (conc. Ba = 14217 µg/g and 14800 µg/g, respectively).

Conclusion

According to the results, the primary cause of the loosening of the isoelastic stems with polyacetal coating is most probably mechanical restlessness, which is responsible for local production of the large polyacetal wear particles responsible to accelerate the process of loosening. PIXE method and thermal neutron activation are sensitive quantitative nuclear methods suitable for direct or indirect detection of wear particles in the tissue around loosened prostheses and to determine morphology of wear particles and their distribution in the tissues.

Downloads

Download data is not yet available.

References

Morscher E, Mathys R. La prothese totale isoelastique de hanche fixee sans cement. Acta Orthop Belg 1974; 40: 639-647.

Maistrelli GL, Fornasier V, Binnington A, McKenzie K, Harrington I. Effect of stem modulus in a total hip arthroplasty model. J Bone Joint Surg 1991; 73-B: 43-46.

Dick W, Morscher E. Erfahrungen mit der Entwicklung zementfreier Endoprothesen. Med Orthop Techn. 1986; 106: 6-10.

Andrew TA, Flanagan JP, Gerundini M, Bombelli R. The isoelastic, noncemented total hip arthroplasty. Clin Orthop 1986; 206: 127-138.

Heitemeyer U, Hierholzer G, Haines J. The importance of trochanteric lag screws to achieve primary stability in cementless fixation of the RM hip prosthesis. Arch Orthop Trauma Surg 1987; 106: 120-2.

Izquierdo RJ, Northmore-Ball MD. Long-term results of revision hip arthroplasty. Survival analysis with special reference to the femoral component. J Bone Joint Surg 1994;76-B:34-9.

Matricali GA, Thibaut H, Hendrickx M, Thibaut R. Revision of total hip arthroplasty using the R.M. isoelastic prosthesis. Acta Orthop Belg 1993;59 Suppl 1:374-6.

Trager D, Rode P, Krause W. Experiences with the RM isoelastic hip endoprosthesis. Chirurg 1985; 56: 718-22.

Rosso R. 5-year rewiew of the isoelastic RM total hip endoprostheses. Arch Orth Trauma Surg 1988; 107: 86-8.

Baumghardt P, Oest O, Süssenbach F. Die isoelastische RM-Hüftprothese. In: Refoir J (ed) Zementfreie Implantation von Hüftgelenk-Endoprosthesen – Standortbestimmung und Tendenzen. Thieme 1987, Stuttgart., Au MK. Isoelastic total hip replacement: clinical evaluation of prosthetic isoelasticity. J Formos Med Assoc 1994;93: 497-502.

Niinimaki TJ, Puranen JP, Jalovaara PK. Revision arthroplasty with an isoelastic uncemented femoral stem. Int Orthop 1995;19: 298-303.

Trebše Trebse R, Milosev I, Kovac S, Mikek M, Pisot V. Poor results from the isoelastic total hip replacement: 14-17-year follow-up of 149 cementless prostheses. Acta Orthop 2005;76: 169-76.

Huiskes R, Weinans H, Van Rietbergen B. The relation between stress schielding and bone resorption around total hip stems and the effects of flexible materials. Clin Orthop 1992; 274: 124-34.

Huiskes R. The various stress patterns of press-fit, ingrown, and cemented femoral stems. Clin Orthop Rel Res 1990; 261: 27-38.

Huiskes R. Failed innovation in total hip replacement: diagnosis and proposals for cure. Acta Orthop Scand 1993; 64: 699-716.

Weinans H, Huiskes R, Grootenboer JH. Effects of material properties of femoral hip components on bone remodeling. J Orthop Res 1992; 10: 845-53.

Boss JH, Shajrawi I, Soudry M, Mendes DG. Histological features of the interface membrane of failed isoelastic cementless prostheses. Int Orthop 1990; 14: 399-403.

Minović A, Milošev I, Pišot V, Cör A, Antolič V. Isolation of polyacetal wear particles from periprosthetic tissue of isoelastic femoral stems. J Bone Joint Surg Br 2001; 83: 1182-90.

Stražar K, Cör A, Antolič V. Biological impact of polyacetal particles on loosening of isoelastic stems. Biomacromolecules 2006 7: 2507-11.

Šmit Ž, Pelicon P, Vidmar G, Zorko B, Budnar M, Demortier G, Gratuze B, Šturm S, Nečemer M, Kump P, Kos M. Analysis of medieval glass by X-ray spectrometric methods. Nucl Instr and Meth B 2000; 718: 161-163.

Irigaray JL, Oudadesse H, Brun V. Nuclear methods to characterize biomaterials. Biomaterials 2001; 22(7): 629-40.

Simčič J, Pelicon P, Budnar M, Šmit Ž. The performance of the Ljubljana ion microprobe. Nucl Instr and Meth B 2002; 190: 283-286.

Jaćimović R, Smodiš B, Bučar T, Stegnar P. k[sub]0-NAA quality assessment by analysis of different certified reference materials using the KAYZERO/SOLCOI software.J Radioanal Nucl Chem 2003; 257: 659-63.

Fisher J, Bell J, Barbour PS, Tipper JL, Matthews JB, Besong AA, Stone MH, Ingham E.A novel method for the prediction of functional biological activity of polyethylene wear debris. Proc Inst Mech Eng H 2001 ;215(2): 127-32.

Gallo J, Slouf M, Goodman SB. The relationship of polyethylene wear to particle size, distribution, and number: A possible factor explaining the risk of osteolysis after hip arthroplasty. J Biomed Mater Res B Appl Biomater 2010; 94(1): 171-7. doi: 10.1002/jbm.b.31638

Ducheyne P, Willems G, Martens M, Helsen J. In vivo metal-ion release from porous titanium-fiber material. J Biomed Mater Res. 1984; 18(3): 293-308.

Dielert E, Milachowski K, Schramel P. The role of the alloy-specific elements iron, cobalt, chromium and nickel in aseptic loosening of total hip joint prosthesis. Z Orthop Ihre Grenzgeb. 1983; 121(1): 58-63.

Schnabel C, Herpers U, Michel R, Löer F, Buchhorn G, Willert HG. Changes of concentrations of the elements Co, Cr, Sb, and Sc in tissues of persons with joint implants. Biol Trace Elem Res 1994; 43-45: 389-95.

Michel R, Nolte M, Reich M, Löer F. Systemic effects of implanted prostheses made of cobalt-chromium alloys. Arch Orthop Trauma Surg 1991; 110(2): 61-74.

Ducheyne P, Willems G, Martens M, Helsen J. In vivo metal-ion release from porous titanium-fiber material. J Biomed Mater Res. 1984; 18(3): 293-308.

Dobbs HS, Minski MJ. Metal ion release after total hip replacement. Biomaterials 1980; 1(4): 193-8.

Busse B, Niecke M, Püschel K, Delling G, Katzer A, Hahn M. Polyethylene abrasion: cause or consequence of an endoprosthesis loosening? Investigations of firm and loosened hip implants. Z Orthop Unfall 2007; 145(4): 452-60.

Michel R, Zilkens J. Studies on the presence of metal traces in tissue surrounding A.O. angle plates, based on neutron activation analysis. Z Orthop Ihre Grenzgeb 1978; 116(5): 666-74.

Kolb A, Reinisch G, Sabeti-Aschraf M, Grübl A, Windhager R. Contamination of surfaces for osseointegration of cementless total hip implants by small aluminium oxide particles: analysis of established implants by use of a new technique. J Orthop Sci 2013; 18(2): 245-9. doi: 10.1007/s00776-012-0343-4.

Witte F, Fischer J, Nellesen J, Vogt C, Vogt J, Donath T, Beckmann F. In vivo corrosion and corrosion protection of magnesium alloy LAE442. Acta Biomater 2010; 6(5): 1792-9. doi: 10.1016/j.actbio.2009.10.012.

Willert HG, Buchhorn GH. The biology of the loosening of hip implants. In: Jakob R, Fulford P, Horan F eds. European Instructional course lectures. Vol 4, The British Editorial Society of Bone and Joint Surgery: London 1999: 58-82.

Published
2015-05-05
How to Cite
1.
Stražar K, Kavčič M, Šmit Žiga, Simčič J, Jaćimović R, Cör A, Pelicon P, Antolič V. Analysis of the tissue around artificial polyacetal hip stems using nuclear methods. TEST ZdravVestn [Internet]. 5May2015 [cited 27Apr.2024];84(3). Available from: http://vestnik-dev.szd.si/index.php/ZdravVest/article/view/1168
Section
Original article