Blood from the tube –cultivation of red cells in vitro

  • Primož Poženel Zavod RS za transfuzijsko medicino, Šlajmerjeva 6, Ljubljana
  • Primož Rožman Zavod RS za transfuzijsko medicino, Šlajmerjeva 6, Ljubljana
Keywords: in vitro erythropoiesis, umbilical cord blood, embryonic stem cells, induced pluripotent stem cells, enucleation

Abstract

Red cell transfusion is an established mode of therapy. Growing demand for red cell concentrates due to ageing population will in the next decades drive the introduction of new approaches in blood supply. In vitro red cell culturing is one of them. This technology enables us to yield red cells from various hematopoietic stem cells. The main goal is to gain large quantities of mature enucleated red cells expressing adult hemoglobin that are of »universal blood group« 0 RhD- negative and compatible with respect to the other blood group systems. At the moment, the technology efficiency does not allow the production of large amounts of red cells that could be comparable to blood donation gains.

The majority of in vitro protocols is based on expansion from umbilical cord blood. Promising sources of stem cells are induced pluripotent stem cells (iPSCs) and human embryonic stem cells, which are still questionable due to their tumorigenicity. The first transfusion of a small volume of in vitro autologous red cells has already been performed. Despite certain shortcomings of in vitro erythropoiesis, we are not far from routine use of red cells that are produced in a laboratory.

Downloads

Download data is not yet available.

References

The collection, testing and use of blood and blood products in Europe, yearly reports 2001–5. Strasbourg: Council of Europe; 2006

Zdravstveni statistični letopisi 2002–2012, transfuzijska dejavnost, Inštitut za varovanje zdravja RS,

Poročilo o transfuzijski dejavnosti za leto 2013, Zavod RS za transfuzijsko medicino

Greinacher A, Fendrich K, Brzenska R, Kiefel V, Hoffmann W. Implications of demographics on future blood supply: a population-based cross sectional study. Transfusion 2011; 51: 702–9.

Giarratana MC, Kobari L, Lapillonne H, Chalmers D, Kiger L, Cynober T et al.Ex vivo generation of fully mature human red blood cells from hematopoietic stem cells. Nat Biotechnol 2005; 23: 69–74.

Neildez-Nguyen TMA, Wajcman H, Marden MC , Bensidhoum M, Moncollin V, Giarratana MC et al. Human erythroid cells produced ex vivo at large scale differentiate into red blood cells in vivo. Nat Biotechnol 2002; 20: 467–72

Kosaryan M, Mahdavi MR, Roshan P, Hojjati MT.Prevalence of alloimunisation in patients with beta thalassaemia major, Letter to the editor. Blood Transfus 2012; 10: 396–7.

Rosse WF, Gallagher D, Kinney TR, Castro O, Dosik H, Moohr J et al. Transfusion and alloimmunization in sickle cell disease. The cooperative study of sickle cell disease. Blood 1990; 76: 1431–37.

Tavian M, Hallais MF, Peault B. Emergence of intraembryonic hematopoietic precursors in the pre-liver human embryio. Development 1999; 126: 793–803.

Palis J, Segel GB.Developmental biology of erythropoiesis. Blood Reviews 1998; 12: 106–14.

Schechter AN. Hemoglobin research and the origins of molecular medicine. Blood 2008; 112: 3927–38.

Mountford J, Olivier El, Turner M. Prospects for the manufacture of red cells for transfusion. Brit J Haematol 2010; 149: 22–34.

Bunn HF, Forget BG. Hemoglobinopathy; Hemoglobin; Hemoglobins; Hemoglobinopathies. W.B. Saunders Co. (Philadelphia) 1986, 690 p.

Yanai T, Sugimoto K, Takashita E, AiharaY, TsurumakiY, Tsuji T et al. Separate control of the survival, the self-renewal and the differentiation of hemopoietic stem cells. Cell Struct Funct 1995; 20: 117–24

Kaneko K, Ikebuchi K.The self-renewal process of murine hemopoietic stem cells supported by interleukin-3 and the synergistic factors and the probability of its occurrence. Nippon Ika Daigaku Zasshi 1995; 62: 41–9.

Wang J, Ramirez T, Ji P, Jayapal SR, Lodish HF, Murata-Hori M. Mammalian erythroblast enucleation requires PI3K-dependent cell polarization. J Cell Sci 2012; 125: 340–49.

Yoshida H, Kawane K, Koike M, Mori Y, Uchiyama, Nagata S. Phosphatidylserinedependent engulfment by macrophages of nuclei from erythroid precursor cells. Nature 2005; 437: 754–58.

Wickrema A, Kee B. Molecular Biology of Hematopoiesis. Springer Science 2009: 74–75.

Bron D, Meuleman N, Mascaux C. Biological basis of anemia. Semin Oncol. 2001; 28(2 suppl 8): 1–6.

Weiss G, Goodnough LT. Anemia of chronic disease. N Engl J Med. 2005; 352: 1011–1023.

Tinsley JC Jr, Moore CV, Dubach R, Minnich V, Grinstein M. The role of oxygen in the regulation of erythropoiesis; depression of the rate of delivery of new red cells to the blood by high concentrations of inspired oxygen. J Clin Invest 1949; 28: 1544–64

Wu H, Klingmüller U, Acurio A, Hsiao JG, Lodish HF. Functional interaction of erythropoietin and stem cell factor receptors is essential for erythroid colony formation. Proc Natl Acad Sci USA 1997; 94: 1806–10.

Silva M, Benito A, Sanz C, Prosper F, Ekhterae D, Nuñez G et al. Erythropoietin can induce the expression of bcl-x(L) through Stat5 in erythropoietin-dependent progenitor cell lines. J Biol Chem 1999; 274: 22165–9.

Motoyama N, Kimura T, Takahashi T, Watanabe T, Nakano T. bcl-x prevents apoptotic cell death of both primitive and definitive erythrocytes at the end of maturation. J EXP Med 1999; 11: 1691–98.

Gluckman E, Broxmeyer HE, Auerbach AD, Friedman HS, Douglas GW, Devergie A. Hematopoietic reconstitution in a patient with Fanconi’s anemia by means of umbilical-cord blood from na HLA identical sibling. N Engl J Med 1989; 321: 1174–8.

Piacibello W, Sanavio F, Severino A, Garetto L, Dane A, Gammaitoni L et al. Ex vivo expansion of cord blood progenitors. Vox Sang 1998; 74: 457–62.

Panzenböck B, Bartunek P, Mapara MY and Zenke M.Growth and differentiation of human stem cell factor/erythropoietin-dependent erythroid progenitor cells in vitro. Blood 1998; 92: 3658–68.

Leberbauer C, Boulme F, Unfried G, Huber J, Beug H, Mullner EW. Different steroids co-regulate long-term expansion versus terminal differentiation in primary human erythroid progenitors. Blood 2005; 105: 85–94.

Miharada K, Hiroyama T, Sudo K, Nagasawa T, Nakamura Y.Efficient enucleation of erythroblasts differentiated in vitro from hematopoietic stem and progenitor cells. Nat Biotechnol 2006; 24: 1255–56.

Baek EJ, Kim HS, Kim S, Jin H, Choi TY, Kim HO.In vitro clinical-grade generation of red blood cells from human umbilical cord blood CD34+ cells. Transfusion 2008; 48: 2235–45.

Keerthivasan G, Wickrema A, Crispino JD. Erythroblast enucleation. Stem Cells Int, 2011: 139851. doi: 10.4061/2011/139851

Fujimi A, Matsunaga T, Kobune M, Kawano Y, Nagaya T, Tanaka I et al.Ex vivo large-scale generation of human red blood cells from cord blood CD34+ cells by co-culturing with macrophages. Int J Hematol 2008; 87: 339–50.

van den Akker E, Satchwell TJ, Pellegrin S, Daniels G, Toye AM. The majority of the in vitro erythroid expansion potential resides in CD34- cells, outweighing the contribution of CD34+ cells and significantly increasing the erythroblast yield from peripheral blood samples. Haematologica 2010; 95: 1594–98.

Giarratana MC, Rouard H, Dumont A, Kiger L, Safeukui I, Le Pennec PY et al. Proof of principle for transfusion of in vitro-generated red blood cells. Blood 2011; 118: 5071–79.

Rožman P, Jež M. Matične celice in napredno zdravljenje: Zdravljenje s celicami, gensko zdravljenje in tkivno inženirstvo. Pojmovnik. Celjska Mohorjeva družba 2011: 289 strani.

Lu SJ, Feng Q, Park JS, Vida L, Lee BS, Strausbauch M et al. Biologic properties and enucleation of red blood cells from human embryonic stem cells. Blood 2008; 112: 4475–84.

Qiu C, Olivier EN, Velho M, Bouhassira EE. Globin switches in yolk sac-like primitive and fetal-like definitive red blood cells produced from human embryonic stem cells. Blood 2008; 111: 2400–8.

Chang KH, Nelson AM, Cao H, Wang L, Nakamoto B, Ware CB et al. Definitive-like erythroid cells derived from human embryonic stem cells coexpress high levels of embryonic and fetal globins with little or no adult globin. Blood 2006; 108: 1515–23.

Ma F, Ebihara Y, Umeda K, Sakai H, Hanada S, Zhang H et al. Generation of functional erythrocytes from human embryonic stem cell-derived definitive hematopoiesis. Proc Natl Acad Sci U S A 2008; 105: 13087–13092.

Lapillonne H, Kobari L, Mazurier C, Tropel P, Giarratana MC, Zanella-Cleon I et al. Red blood cell generation from human induced pluripotent stem cells: perspectives for transfusion medicine. Haematologica 2010; 95: 1651–59.

Takahashi K, Tanabe K, Ohnuki M, Narita M, Ichisaka T, Tomoda K et al. Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell 2007; 131: 861–72.

Dias J, Gumenyuk M, Kang HJ, Vodyanik M, Yu J, Thomson JA et al. Generation of red blood cells from human induced pluripotent stem cells. Stem Cells Dev 2011; 20: 1639–47.

Seifinejad A, Taei A, Totonchi M, Vazirinasab H, Hassani SN, Aghdami N et al.Generation of human induced pluripotent stem cells from a Bombay individual: Moving towards „universal-donor“ red blood cells. Biochem Biophys Res Commun 2010; 391: 329–34.

Migliaccio R, Whitsett C, and Migliaccio G.Erythroid cells in vitro : from developmental biology to blood transfusion products. Curr Opin in Hematol 2009; 164: 259–68.

Zeuner A, Martelli F, Vaglio S, Federici G, Whitsett C, Migliaccio AR. Concise review: stem cell-derived erythrocytes as upcoming players in blood transfusion. Stem Cells 2012; 30: 1587–96

Ishigaki T, Kazuhiro S, Hiroyama T, Miharada K, Ninomiya H, Chiba S et al. Human hematopoietic stem cells can survive in vitro for several months. Adv Hematol 2009; Article ID 936761, 7 pages, doi: 10.1155/2009/936761

Southcott MJ, Tanner MJ, Anstee DJ. The expression of human blood group antigens during erythropoiesis in a cell culture system. Blood 1999; 93: 4425–35.

Opelz G, Vanrenterghem Y, Kirste G, Gray DW, Horsburgh T, Lachance JG et al. Prospective evaluation of pretransplant blood transfusions in cadaver kidney recipients. Transplantation 1997; 63: 964–67.

Blumberg N, Heal JM, Gettings KF.WBC reduction of RBC transfusions is associated with a decreased incidence of RBC alloimmunization. Transfusion 2003; 43: 945–52.

Peyrard T, Bardiaux L, Krause C, Kobari L, Lapillonne H, Andreu G et al. Banking of pluripotent adult stem cells as an unlimited source for red blood cell production: Potential applications for alloimmunized patients and rare blood challenges. Transfus Med Rev 2011; 25: 206–16.

Knoepfler PS,. Deconstructing stem cell tumorigenicity: a roadmap to safe regenerative medicine. Stem Cells 2009; 27: 1050–56.

Varlakhanova NV, Cotterman RF, deVries WN, Morgan J, Donahue LR, Murray S, et al. myc maintains embryonic stem cell pluripotency and self-renewal. Differentiation 2010 ; 80: 1–21.

Cotterman R, Knoepfler PS. N-Myc regulates expression of pluripotency genes in neuroblastoma including lif, klf2, klf4, and lin28b. PLoS ONE 2009; 4(6): e5799.

Yu J, Hu K, Smuga-Otto K, Tian S, Stewart R, Slukvin II et al. Human induced pluripotent stem cells free of vector and transgene sequences. Science 2009; 324: 797–801.

Jiang X, Christopherson GT, Mao HQ.The effect of nanofibre surface amine density and conjugate structure on the adhesion and proliferation of human haematopoietic progenitor cells. Interface focus 2011; 1: 725–733.

Migliaccio AR, Masselli E, Varricchio L, Whitsett C. Ex-vivo expansion of red blood cells: How real for transfusion in humans? Blood Reviews 2012; 26: 81–95.

How to Cite
1.
Poženel P, Rožman P. Blood from the tube –cultivation of red cells in vitro. TEST ZdravVestn [Internet]. 1 [cited 5Aug.2024];83(9). Available from: http://vestnik-dev.szd.si/index.php/ZdravVest/article/view/1280
Section
Review

Most read articles by the same author(s)