Characterisation of haematopoietic stem and progenitor cells in products intended for transplantation

  • Elvira Maličev Blood Transfusion Center of SloveniaŠlajmerjeva 61000 Ljubljana
  • Metka Krašna Blood Transfusion Center of Slovenia Šlajmerjeva 6 1000 Ljubljana
Keywords: hematopoietic stem cells, CD34 cells, cell products, flow cytometry, CFU assay

Abstract

Haematopoietic stem and progenitor cells have been successfully used for autologous and al- logeneic transplantations for many years. Quantitative and qualitative laboratory assays allow controlling di erent cellular products during collection, concentration and preservation. The in- formation about cell number, viability, functionality and purity of the gra ensure safe applica- tion and help predict the likelihood of successful engra ment. Almost 50 years of research have disclosed the great heterogeneity of cells that exhibit a haematopoietic di erentiation potential. This will enable the identification of subpopulations within the population of CD34-positive ha- ematopoietic stem cells.

Downloads

Download data is not yet available.

References

Zakon o kakovosti in varnosti človeških tkiv in celic, namenjenih za zdravljenje. Uradni list RS 2007;17(61):8529–8536; in 2015;25(56):6539–6548.

Ogawa M. Differentiation and proliferation of hematopoietic stem cells. Blood. 1993;81(11):2844–53.

Weissman IL. Stem Cells: units of development, units of regeneration, and units in evolution. Cell. 2000;100(1):157–68.

Payne KJ, Crooks GM. Human hematopoietic lineage commitment. Immunological Reviews. 2002;187(1):48–64.

Wood B. Multicolor Immunophenotyping: Human Immune System Hematopoiesis. Methods in Cell Biology: Elsevier; 2004. p. 559–76.

Glossmann JP, Josting A, Pfistner B, Paulus U, Engert A. A randomized trial of chemotherapy with carmustine, etoposide, cytarabine, and melphalan (BEAM) plus peripheral stem cell transplantation (PBSCT) vs single-agent high-dose chemotherapy followed by BEAM plus PBSCT in patients with relapsed Hodgkin's disease (HD-R2). Annals of Hematology. 2002;81(8):424–9.

Krause DS, Fackler MJ, Civin CI, May WS. CD34: structure, biology, and clinical utility. Blood. 1996;87(1):1–13.

Kresnik PK, Krasna M, Rozman P, Vrtovec B, Malicev E. Collection and immunoselection of CD34+ cells: the impact of age, sex, and diabetes in patients with chronic heart failure. Transfusion. 2016;56(7):1792–800.

Sutherland DR, Anderson L, Keeney M, Nayar R, Chin-Yee IAN. The ISHAGE Guidelines for CD34+ Cell Determination by Flow Cytometry. Journal of Hematotherapy. 1996;5(3):213–26.

Jansen EM, Hanks SG, Terry C, Akard LP, Thompson JM, Dugan MJ, et al. Prediction of engraftment after autologous peripheral blood progenitor cell transplantation: CD34, colony-forming unit?granulocyte-macrophage, or both? Transfusion. 2007;47(5):817–23.

Laura E Sidney, Matthew J Branch, Siobhán E Dunphy, Harminder S Dua, and Andrew Hopkinson Concise Review: Evidence for CD34 as a Common Marker for Diverse Progenitors. Stem Cells. 2014;32(6):1380–89.

Krašna M, Maličev E, Jež M, Nunar Perko A, Cukjati M. Kakovost odmrznjenih pripravkov krvotvornih matičnih celic za presaditev. Slovenian Medical Journal. 2015;84(6).

Ivanovic Z, Vlaski M. Production of hematopoietic cells from umbilical cord blood stem cells for transfusion purposes: focus on ex vivogeneration of red blood cells. Scr Med. 2012;43(2):99–105

Verfaillie CM, Almeida-Porada G, Wissink S, Zanjani ED. Kinetics of engraftment of CD34− and CD34+ cells from mobilized blood differs from that of CD34− and CD34+ cells from bone marrow. Experimental Hematology. 2000;28(9):1071–9.

Zanjani ED, Almeida-Porada G, Livingston AG, Flake AW, Ogawa M. Human bone marrow CD34- cells engraft in vivo and undergo multilineage expression that includes giving rise to CD34+ cells. Exp Hematol. 1998;26(4):353–60.

Gallacher L, Murdoch B, Wu DM, Karanu FN, Keeney M, Bhatia M. Isolation and characterization of human CD34(-)Lin(-) and CD34(+)Lin(-) hematopoietic stem cells using cell surface markers AC133 and CD7. Blood. 2000;95(5):2813–20.

Mizrak D, Brittan M, Alison MR. CD133: molecule of the moment. The Journal of Pathology. 2007;214(1):3–9.

Stewart AK, Imrie K, Keating A, Anania S, Nayar R, Sutherland DR. Optimizing the CD34+ and CD34+Thy-1+ stem cell content of peripheral blood collections. Exp Hematol. 1995;23(14):1619–27.

Donnenberg AD, Koch EK, Griffin DL, Stanczak HM, Kiss JE, Carlos TM, et al. Viability of cryopreserved BM progenitor cells stored for more than a decade. Cytotherapy. 2002;4(2):157–63.

Sasnoor LM, Kale VP, Limaye LS. Supplementation of Conventional Freezing Medium with a Combination of Catalase and Trehalose Results in Better Protection of Surface Molecules and Functionality of Hematopoietic Cells. Journal of Hematotherapy & Stem Cell Research. 2003;12(5):553–64.

Fisher V, Khuu H, David-Ocampo V, Byrne K, Pavletic S, Bishop M, et al. Analysis of the recovery of cryopreserved and thawed CD34+ and CD3+ cells collected for hematopoietic transplantation. Transfusion. 2013;54(4):1088–92.

Terstappen LW, Huang S, Safford M, Lansdorp PM, Loken MR. Sequential generations of hematopoietic colonies derived from single nonlineage-committed CD34+CD38- progenitor cells. Blood. 1991;77(6):1218–27.

Bhatia M, Wang JCY, Kapp U, Bonnet D, Dick JE. Purification of primitive human hematopoietic cells capable of repopulating immune-deficient mice. Proceedings of the National Academy of Sciences. 1997;94(10):5320–5.

Weissman IL, Shizuru JA. The origins of the identification and isolation of hematopoietic stem cells, and their capability to induce donor-specific transplantation tolerance and treat autoimmune diseases. Blood. 2008;112(9):3543–53.

Dooley DC. Analysis of Primitive CD34- and CD34+ Hematopoietic Cells from Adults: Gain and Loss of CD34 Antigen by Undifferentiated Cells Are Closely Linked to Proliferative Status in Culture. Stem Cells. 2004;22(4):556–69.

McKenzie JL, Takenaka K, Gan OI, Doedens M, Dick JE. Low rhodamine 123 retention identifies long-term human hematopoietic stem cells within the Lin-CD34+CD38- population. Blood. 2007;109(2):543–5.

Notta F, Doulatov S, Laurenti E, Poeppl A, Jurisica I, Dick JE. Isolation of Single Human Hematopoietic Stem Cells Capable of Long-Term Multilineage Engraftment. Science. 2011;333(6039):218–21.

Gunji Y, Nakamura M, Osawa H, Nagayoshi K, Nakauchi H, Miura Y, Yanagisawa M, Suda T. Human primitive hematopoietic progenitor cells are more enriched in KITlowcells than in KIThighcells. Blood. 1993;82(11):3283–89.

Liu H, Verfaillie CM. Myeloid-lymphoid initiating cells (ML-IC) are highly enriched in the rhodamine-c-kit+CD33−CD38− fraction of umbilical cord CD34+ cells. Experimental Hematology. 2002;30(6):582–9.

Yin AH, Miraglia S, Zanjani ED, Almeida-Porada G, Ogawa M, Leary AG, Olweus J, Kearney J, Buck DW. (1997). AC133, a novel marker for human hematopoietic stem and progenitor cells. Blood. 1997;90(12):5002–12.

Takahashi M, Matsuoka Y, Sumide K, Nakatsuka R, Fujioka T, Kohno H, et al. CD133 is a positive marker for a distinct class of primitive human cord blood-derived CD34-negative hematopoietic stem cells. Leukemia. 2013;28(6):1308–15.

Radtke S, Görgens A, Kordelas L, Schmidt M, Kimmig KR, Köninger A, et al. CD133 allows elaborated discrimination and quantification of haematopoietic progenitor subsets in human haematopoietic stem cell transplants. British Journal of Haematology. 2015;169(6):868–78.

Yang H, Acker JP, Cabuhat M, McGann LE. Effects of incubation temperature and time after thawing on viability assessment of peripheral hematopoietic progenitor cells cryopreserved for transplantation. Bone Marrow Transplantation. 2003;32(10):1021–6.

Mascotti K, McCullough J, Burger SR. HPC viability measurement: trypan blue versus acridine orange and propidium iodide. Transfusion. 2000;40(6):693–6.

Xiao M, Dooley DC. Assessment of Cell Viability and Apoptosis in Human Umbilical Cord Blood Following Storage. Journal of Hematotherapy & Stem Cell Research. 2003;12(1):115–22.

Sparrow RL, Komodromou H, Tippett E, Georgakopoulos T, Xu W. Apoptotic lymphocytes and CD34+ cells in cryopreserved cord blood detected by the fluorescent vital dye SYTO 16 and correlation with loss of L-selectin (CD62L) expression. Bone Marrow Transplantation. 2006;38(1):61–7.

López MC, Lawrence DA. Proficiency testing experience for viable CD34+ stem cell analysis. Transfusion. 2008;48(6):1115–21.

Anthony RS, McKelvie ND, Cunningham AJ, Craig JIO, Rogers SY, Parker AC. Flow cytometry using annexin V can detect early apoptosis in peripheral blood stem cell harvests from patients with leukaemia and lymphoma. Bone Marrow Transplantation. 1998;21(5):441–6.

Radke TF, Barbosa D, Duggleby RC, Saccardi R, Querol S, Kögler G. The Assessment of Parameters Affecting the Quality of Cord Blood by the Appliance of the Annexin V Staining Method and Correlation with CFU Assays. Stem Cells International. 2013;2013:1–10.

Balint B, Ivanović Z, Petakov M, Taseski J, Jovčić G, Stojanović N, et al. The cryopreservation protocol optimal for progenitor recovery is not optimal for preservation of marrow repopulating ability. Bone Marrow Transplantation. 1999;23(6):613–9.

Matsumoto N, Yoshizawa H, Kagamu H, Abe T, Fujita N, Watanabe S, et al. Successful liquid storage of peripheral blood stem cells at subzero non-freezing temperature. Bone Marrow Transplantation. 2002;30(11):777–84.

Buchanan SS, Gross SA, Acker JP, Toner M, Carpenter JF, Pyatt DW. Cryopreservation of Stem Cells Using Trehalose: Evaluation of the Method Using a Human Hematopoietic Cell Line. Stem Cells and Development. 2004;13(3):295–305.

Barker JN, Wagner JE. Umbilical-cord blood transplantation for the treatment of cancer. Nature reviews. Cancer. 2003;3(7):526–32.

Ito CY, Kirouac DC, Madlambayan GJ, Yu M, Rogers I, Zandstra PW. The AC133+CD38-, but not the rhodamine-low, phenotype tracks LTC-IC and SRC function in human cord blood ex vivo expansion cultures. Blood. 2010;115(2):257–60.

Valeri CR, Pivacek LE. Effects of the temperature, the duration of frozen storage, and the freezing container on in vitro measurements in human peripheral blood mononuclear cells. Transfusion. 1996;36(4):303–8.

Halle P, Tournilhac O, Knopinska-Posluszny W, Kanold J, Gembara P, Boiret N, Rapatel C, Berger M, Travade P, Angielski S, Bonhomme J, Deméocq F. Uncontrolled-rate freezing and storage at −80 °C, with only 3.5 % DMSO in cryoprotective solution for 109 autologous peripheral blood progenitor cell transplantations. Transfusion. 2001;41(5):667–73.

Zver S, Melkić E, Radevska T. Zdravljenje diseminiranega plazmocitoma na Kliničnem oddelku za hematologijo UKC Ljubljana z avtologno presaditvijo krvotvornih matičnih celic v letih 2014 in 2015. Zdrav Vestn. 2016;85(9).

Pretnar J, Tonejc M, Cotič-Flajs C, Preložnik-Zupan I. Nesorodna alogenična presaditev krvotvornih matičnih celic pri zdravljenju odraslih bolnikov z akutnimi levkemijami in kronično mieloično levkemijo – 6-letne izkušnje. Zdrav Vestn 2008;77 Supl: I-47–50.

Novakovic BJ. Immunotoxin – a new treatment option in patients with relapsed and refractory Hodgkin lymphoma. Radiology and Oncology. 2015;49(4):315–19.

Broxmeyer HE, Srour EF, Hangoc G, Cooper S, Anderson SA, Bodine DM. High-efficiency recovery of functional hematopoietic progenitor and stem cells from human cord blood cryopreserved for 15 years. Proceedings of the National Academy of Sciences. 2003;100(2):645–50.

FACT-JACIE International Standards for Hematopoietic Cellular Therapy Product Collection, processing, and Administration. 6th ed. Nebraska: Fact; 2015.

Published
2018-03-02
How to Cite
1.
Maličev E, Krašna M. Characterisation of haematopoietic stem and progenitor cells in products intended for transplantation. TEST ZdravVestn [Internet]. 2Mar.2018 [cited 25Apr.2024];87(1-2):58-. Available from: http://vestnik-dev.szd.si/index.php/ZdravVest/article/view/1602
Section
Professional Article