Mechanisms of radiation-induced brain injury / Review

  • Nataša Šuštar Univerzitetni klinični center Ljubljana, Zaloška cesta 7, SI-1525, Ljubljana;
  • Berta Jereb Onkološki inštitut, Zaloška cesta 2, SI-1000, Ljubljana
  • David Neubauer Klinični oddelek za otroško, mladostniško in razvojno nevrologijo, Pediatrična klinika, Univerzitetni klinični center Ljubljana, Bohoričeva ulica 20, SI-1525, Ljubljana;
Keywords: ionizing radiation, brain injury, inflammatory and oxidative processes, neurogenesis, cognitive decline,

Abstract

Mechanisms of radiation-induced brain injury are not yet fully understood. Early failure occurs because of the effect of ionizing radiation on dividing endothelialcells and oligodendrocytes. Hypothetically, late radiation-induced brain injury is causedby chronic inflammation and oxidative stress. In the case of irradiation of thehippocampus, the failure of neurogenesis and cognitive decline could be consequencesof such pathological mechanisms. Due to lack of diagnostic tools, that could not more precisely define the brain injury after radiation, therapy, that may prevent such consequences in patients who require radiotherapy, is not currently known. This articlesummarizes research hypotheses regarding processes of the brain damage after radiation, prospects in the diagnosis and therapeutic approaches.

Downloads

Download data is not yet available.

Author Biographies

Nataša Šuštar, Univerzitetni klinični center Ljubljana, Zaloška cesta 7, SI-1525, Ljubljana;

Nataša Šuštar, dr. med., specializantka pediatrije

Univerzitetni klinični center

Zaloška cesta 7, SI-1525, Ljubljana


Berta Jereb, Onkološki inštitut, Zaloška cesta 2, SI-1000, Ljubljana

Prof. dr. Berta Jereb, dr.med.

Onkološki inštitut,

Zaloška cesta 2, SI-1000, Ljubljana

David Neubauer, Klinični oddelek za otroško, mladostniško in razvojno nevrologijo, Pediatrična klinika, Univerzitetni klinični center Ljubljana, Bohoričeva ulica 20, SI-1525, Ljubljana;

Prof. dr. David Neubauer, dr. med.

Klinični oddelek za otroško, mladostniško in razvojno nevrologijo, Pediatrična klinika, Univerzitetni klinični center Ljubljana, Bohoričeva ulica 20, SI-1525, Ljubljana;

 


 

References

DeAngelis LM, Posner JB. Side effects of radiation therapy. Neurologic complications of cancer. 2nd ed. New York: Oxford University Press; 2009. p. 511–55.

Zupan M, Roš Opaškar T. Neželeni učinki radioterapije na možgane. Onkologija/za prakso 2011; XV: 119–25.

Macedoni-Lukšič M, Jereb B, Todorovski L. Long-term sequelae in children treated for brain tumors: Impairments, Disability, and Handicap. Pediatr Hematol Oncol 2003; 20: 89–101.

Zadravec-Zaletel L, Bratanič N, Korenjak R, Macedoni-Lukšič M, Stirn-Kranjc B, Černelč S, Jereb B. Late sequelae in brain tumor patients treated with central nervous axis irradiation (CNA RT). V: Long-term complications of treatment of children and adolescents for cancer. Roswell: Cancer Institute; 1998; 130: 1–2.

Kempf SJ, Azimzadeh O, Atkinson MJ, Tapio S. Long-term effects of ionising radiation on the brain: cause for concern? Radiat Environ Biophys 2013; 52: 5–16.

Schultheiss TE, Kun LE, Ang KK, Stephens LC. Radiation response of the central nervous system. Int J Radiat Oncol Biol Phys 1995; 31: 1093–112.

Bernier MO, Rehel JL, Brisse HJ, Wu-Zhou X, Caer-Lorho S, Jacob S et al. Radiation exposure from CT in early childhood: a French large-scale multicentre study. Br J Radiol 2012; 85: 53–60.

Schonfeld SJ, Lee C, Berrington De Gonzalez A. Medical exposure to radiation and thyroid cancer. Clin Oncol (R Coll Radiol) 2011; 23: 244–50.

Ionising Radiation (Medical Exposure) Regulations 2000 No. 1059.

Pearce MS, Salotti JA, Little MP, Mchugh K, Lee C, Kim KP, et al. Radiation exposure from CT scans in childhood and subsequent risk of leukaemia and brain tumours: a retrospective cohort study. Lancet 2012; 380: 499–505.

Krille L, Zeeb H, Jahnen A, Mildenberger P, Seidenbusch M, Schneider K et al. Computed tomographies and cancer risk in children: a literature overview of CT practices, risk estimations and an epidemiologic cohort study proposal. Radiat Environ Biophys 2012; 51: 103–11.

Thierry-Chef I, Dabin J, Friberg EG, Hermen J, Istad TS, Jahnen A et al. Assessing organ doses from paediatric CT scans—a novel approach for an epidemiology study (the EPI-CT study). Int J Environ Res Public Health 2013; 10 : 717–28.

Jereb B. Model for Long-Term Follow–Up of Survivors of Childhood Cancer. Medical and Pediatric Oncology 2000; 34: 256–8.

Ruben JD, Dally M, Bailey M, Smith R, McLean CA, Fedele P. Cerebral radiation necrosis: incidence, outcomes, and risk factors with emphasis on radiation parameters and chemotherapy. Int J Radiat Oncol Biol Phys 2006; 65: 499–508.

Jazbec J, Ećimović P, Jereb B. Second neoplasms after treatment of childhood cancer in Slovenia. Pediatr Blood Cancer 2004; 42: 574–81.

Walter AW, Hancock ML, Pui CH, Hudson MM, Ochs JS, Rivera GK et al. Secondary brain tumors in children treated for acute lymphoblastic leukemia at St Jude Children’s Research Hospital. J Clin Oncol 1998; 16: 3761–7.

Haddy N, Mousannif A, Tukenova M, Guibout C, Grill J, Dhermain F et al. Relationship between the brain radiation dose for the treatment of childhood cancer and the risk of long-term cerebrovascular mortality. Brain 2011; 134: 1362–72.

Nimjee SM, Powers CJ, Bulsara KR. Review of the literature on de novo formation of cavernous malformations of the central nervous system after radiation therapy. Neurosurg Focus 2006; 21: E4.

Darzy KH, Shalet SM. Hypopituitarism following radiotherapy. Pituitary 2009; 12: 40–50.

Greene-Schloesser D, Robbins ME, Peiffer AM, Shaw EG, Wheeler KT, Chan MD. Radiation-induced brain injury: A review. Front Oncol 2012; 2:73.

Meyers CA, Brown PD. Role and relevance of neurocognitive assessment in clinical trials of patients with CNS tumors. J Clin Oncol 2006; 24: 1305–9.

Anderson VA, Godber T, Smibert E, Weiskop S, Ekert H. Cognitive and academic outcome following cranial irradiation and chemotherapy in children: a longitudinal study. Br J Cancer 2000; 82: 255–62.

Mulhern R, Fairclough D, Ochs D. A prospective comparison of neuropsychological performance of children surviving leukemia who received 18 Gy, 24 Gy, or no cranial irradiation. J Clin Oncol 1991; 9: 1348–56.

Mulhern RK, Merchant TE, Gajjar A, Reddick WE, Kun LE. Late neurocognitive sequelae in survivors of brain tumours in childhood. Lancet Oncol 2004: 5: 399–408.

Halberg F, Kramer J, Moore I, Wara W, Matthay K, Ablin A. Prophylactic cranial irradiation dose effects on late cognitive function in children treated for acute lymphoblastic leukemia. Int J Radiat Oncol Biol Phys 1991; 11: 13–6.

Tofilon PJ, Fike JR. The radioresponse of the central nervous system: a dynamic process. Radiat Res 2000; 153: 357–70.

Shaw EG, Robbins ME. The management of radiation-induced brain injury. Cancer Treat Res 2006; 128: 7–22.

Otsuka S, Coderre JA, Micca PL, Morris GM, Hopewell JW, Rola R, et al. Depletion of neural precursor cells after local brain irradiation is due to radiation dose to the parenchyma, not the vasculature. Radiat Res 2006; 165: 582–91.

Casey BJ, Giedd JN, Thomas KM. Structural and functional brain development and its relation to cognitive development. Biol Psychol 2000; 54: 241–57.

Palmer TD, Willhoite AR, Gage FH. Vascular niche for adult hippocampal neurogenesis. J Comp Neurol 2000; 425: 479–94.

Wilson CM, Gaber MW, Sabek OM, Zawaski JA, Merchant TE. Radiation-induced astrogliosis and blood–brain barrier damage can be abrogated using anti-TNF treatment. Int J Radiat Oncol Biol Phys 2009; 74: 934–41.

Song H, Stevens CF, Gage FH. Astroglia induce neurogenesis from adult neural stem cells. Nature 2002; 417: 39–44.

Seth P, Koul N. Astrocyte, the star avatar: redefined. J Biosci 2008; 33: 405–21.

Robbins ME, Zhao W. Chronic oxidative stress and radiation-induced late normal tissue injury: a review. Int J Radiat Biol 2004; 80: 251–9.

Lee WH, Sonntag WE, Mitschelen M, Yan H, Lee YW. Irradiation induces regionally specific alterations in pro-inflammatory environments in rat brain. Int J Radiat Biol 2010; 86: 132–44.

Ramanan S, Kooshki M, Zhao W, Hsu FC, Robbins ME. PPARalpha ligands inhibit radiation-induced microglial inflammatory responses by negatively regulating NF-kappaB and AP-1 pathways. Free Radic Biol Med 2008; 45: 1695–704.

Fukuda H, Fukuda A, Zhu C, Korhonen L, Swanpalmer J, Hertzman S, et al. Irradiation-induced progenitor cell death in the developing brain is resistant to erythropoietin treatment and caspase inhibition. Cell Death Differ 2004; 11: 1166–78.

Limoli CL, Rola R, Giedzinski E, Mantha S, Huang TT, Fike JR. Cell-density-dependent regulation of neural precursor cells function. Proc. Natl. Acad. Sci. U.S.A. 2004; 101: 16052–7.

Monje ML, Mizumatsu S, Fike JR, Palmer TD. Irradiation induces neural precursor-cell dysfunction. Nat Med 2002; 8: 955–62.

Ramanan S, Kooshki M, Zhao W, Hsu FC, Riddle DR, Robbins ME. The PPARalpha agonist fenofibrate preserves hippocampal neurogenesis and inhibits microglial activation after whole-brain irradiation. Int J Radiat Oncol Biol Phys 2009; 75: 870–7.

Rola R, Raber J, Rizk A, Otsuka S, VandenBerg SR, Morhardt DR, Fike JR. Radiation-induced impairment of hippocampal neurogenesis is associated with cognitive deficits in young mice. Exp Neurol 2004; 188: 316–30.

Monje ML, Vogel H, Masek M, Ligon KL, Fisher PG, Palmer TD. Impaired human hippocampal neurogenesis after treatment for central nervous system malignancies. Ann Neurol 2007; 62: 515–20.

Greene-Schloesser D, Robbins ME. Radiation-induced cognitive impairment from bench to bedside. Neuro-Oncology 2012; 14: 37–44.

Peiffer AM, Leyrer CM, Greene-Schloesser DM, Shing E, Kearns WT, Hinson WH, et al. Neuroanatomical target theory as a predictive model for radiation-induced cognitive decline. Neurology 2013; 80: 747–53.

Marsh JC, Gielda BT, Herskovic AM, Abrams RA. Cognitive Sparing during the Administration of Whole Brain Radiotherapy and Prophylactic Cranial Irradiation: Current Concepts and Approaches. J Oncol 2010; 2010: 198208–24.

Gage FH, Kempermann G, Palmer TD, Peterson DA, Ray J. Multipotent progenitor cells in the adult dentate gyrus. J Neurobiol 1998; 36: 249–66.

Raber J, Rola R, LeFevour A, Morhardt D, Curley J, Mizumatsu S, et al. Radiation-induced cognitive impairments are associated with changes in indicators of hippocampal neurogenesis. Radiat Res 2004; 162: 39–47.

Redmond KJ, Mahone EM, Terezakis S, Ishaq O, Ford E, McNutt T, et al. Association between radiation dose to neuronal progenitor cell niches and temporal lobes and performance on neuropsychological testing in children: a prospective study. Neuro Oncol 2013; 15: 360–9.

Zou P, Mulhern RK, Butler RW, Li CS, Langston JW, Ogg RJ. BOLD responses to visual stimulation in survivors of childhood cancer. Neuroimage 2005; 24: 61–9.

Monje M, Thomason ME, Rigolo L, Wang Y, Waber DP, Sallan SE, Golby AJ. Functional and structural differences in the hippocampus associated with memory deficits in adult survivors of acute lymphoblastic leukemia. Pediatr Blood Cancer 2013; 60: 293–300.

Sundgren PC, Nagesh V, Elias A, Tsien C, Junck L, Gomez Hassan DM et al. Metabolic alterations: a biomarker for radiation-induced normal brain injury-an MR spectroscopy study. J Magn Reson Imaging 2009; 29: 291–7.

Robbins ME, Brunso-Bechtold JK, Peiffer AM, Tsien CI, Bailey JE, Marks LB. Imaging radiation-induced normal tissue injury. Radiat Res 2012; 177: 449–66.

Shi L, Olson J, D’Agostino R Jr, Linville C, Nicolle MM, Robbins ME. Aging masks detection of radiation-induced brain injury. Brain Res 2011; 1385: 307–16.

Nagesh V, Tsien CI, Chenevert TL, Ross BD, Lawrence TS, Junick L, Cao Y. Radiation-induced changes in normal-appearing white matter in patients with cerebral tumors: a diffusion tensor imaging study. Int J Radiat Oncol Biol Phys 2008; 70: 1002–10.

Qiu D, Kwong DL, Chan GC, Leung LH, Khong PL. Diffusion tensor magnetic resonance imaging finding of discrepant fractional anisotropy between the frontal and parietal lobes after whole-brain irradiation in childhood medulloblastoma survivors: reflection of regional white matter radiosensitivity? Int J Radiat Oncol Biol Phys 2007; 69: 846–51.

Khong PL, Leung LHT, Fung ASM, Fong DYT, Qiu D, Kwong DL et al. White matter anisotropy in post-treatment childhood cancer survivors: preliminary evidence of association with neurocognitive function. J Clin Oncol 2006; 24: 884–90.

Chapman CH, Nagesh V, Sundgren PC, Buchtel H, Chenevert TL, Junck L et al. Diffusion tensor imaging of normal-appearing white matter as biomarker for radiation-induced late delayed cognitive decline. Int J Radiat Oncol Biol Phys 2012; 82: 2033–40.

Schnegg CI, Kooshki M, Hsu FC, Sui G, Robbins ME. PPARδ prevents radiation-induced proinflammatory responses in microglia via transrepression of NF-κB and inhibition of the PKCα/MEK1/2/ERK1/2/AP-1 pathway. Free Radic Biol Med 2012; 52 : 1734–43.

Zhao W, Payne V, Tommasi E, Diz DI, Hsu FC, Robbins ME. Administration of the peroxisomal proliferator-activated receptor (PPAR)γ agonist pioglitazone during fractionated brain irradiation prevents radiation-induced cognitive impairment. Int J Radiat Oncol Biol Phys 2007; 67: 6–9.

Robbins ME, Zhao W, Garcia-Espinosa MA, Diz DI. Renin-angiotensin system blockers and modulation of radiation-induced brain injury. Curr Drug Targets 2010; 11 : 1413–22.

Kim JH, Brown SL, Kolozsvary A, Jenrow KA, Ryu S, Rosenblum ML, Carretero OA. Modification of radiation injury by ramipril, inhibitor of angiotensin-converting enzyme, on optic neuropathy in the rat. Radiat Res 2004; 161: 137–142.

Jenrow KA, Brown SL, Liu J, Kolozsvary A, Lapanowski K, Kim JH. Ramipril mitigates radiation-induced impairment of neurogenesis in the rat dentate gyrus. Radiat Oncol 2010; 5: 6.

Lee TC, Greene-Schloesser D, Payne V, Diz DI, Hsu FC, Kooshki M, et al. Chronic administration of the ACE inhibitor, ramipril, prevents fractionated whole-brain irradiation-induced perirhinal cortex dependent cognitive impairment. Radiat Res 2012; 178: 46–56.

Shaw EG, Rosdhal R, D’Agostino RB Jr, Lovato J, Naughton MJ, Robbins ME, Rapp SR. Phase II study of donepezil in irradiated brain tumor patients: effect on cognitive function, mood, and quality of life. J Clin Oncol 2006; 24: 1415–20.

Acharya MM, Christie LA, Lan ML, Donovan PJ, Cotman CW, Fike JR, Limoli CL. Rescue of radiation-induced cognitive impairment through cranial transplantation of human embryonic stem cells. Proc. Natl. Acad. Sci. U.S.A. 2009; 106: 19150–5.

Joo KM, Jin J, Kang BG, Lee SJ, Kim KH, Yang H, et al. Trans-differentiation of neural stem cells: a therapeutic mechanism against the radiation induced brain damage. PLoS One 2012; 7: e25936.

Gondi V, Mehta MP, Pugh S, Tome WA, Kanner A, Caine C et al. Memory Preservation with Conformal Avoidance of the Hippocampus during Whole-Brain Radiotherapy (WBRT) for Patients with Brain Metastases: Primary Endpoint Results of RTOG 0933. ASTRO’s 55th Annual Meeting, 2013 Sep 23. Dosegljivo na: http: //appliedradiationoncology.com/hippocampal-avoidance-whole-brain-radiotherapy-reduces-cognitive-impairment/

Published
2014-11-03
How to Cite
1.
Šuštar N, Jereb B, Neubauer D. Mechanisms of radiation-induced brain injury / Review. TEST ZdravVestn [Internet]. 3Nov.2014 [cited 5May2024];83(10). Available from: http://vestnik-dev.szd.si/index.php/ZdravVest/article/view/970
Section
Review