Genetic and clinical characteristics of patients with phenylketonuria in Slovenia

  • Urh Grošelj Klinični oddelek za endokrinologijo, diabetes in presnovne bolezni Pediatrična klinika UKC Ljubljana Bohoričeva 20 1000 Ljubljana
  • Mojca Žerjav Tanšek Klinični oddelek za endokrinologijo, diabetes in presnovne bolezni Pediatrična klinika UKC Ljubljana Bohoričeva 20 1000 Ljubljana
  • Katarina Trebušak Podkrajšek Služba za specialno laboratorijsko diagnostiko Pediatrična klinika UKC Ljubljana Bohoričeva 20 1000 Ljubljana
  • Tadej Battelino Klinični oddelek za endokrinologijo, diabetes in presnovne bolezni Pediatrična klinika UKC Ljubljana Bohoričeva 20 1000 Ljubljana
Keywords: phenylketonuria, genotype, phenotype, the PKU incidence, Slovenia

Abstract

Phenylketonuria (PKU), an autosomal recessive disease, is the most common inborn error of amino acid metabolism in Caucasians, affecting 1/10,000 individuals. PKU is caused by the deficiency of hepatic phenylalanine hydroxylase (PAH), which catalyzes the hydroxylation of phenylalanine (Phe) to tyrosine, using tetrahydrobiopterin (BH4) as a cofactor. The PAH gene is located on the chromosome 12 and consists of 13 exons. Over 600 different mutations of the PAH gene have been identified to date, which result in a broad spectrum of PAH deficiency. The resulting elevation of Phe in the blood (hyperphenilalaninemia – HPA) could cause mental retardation if left untreated. The classification of PKU is based on the metabolic phenotype of a patient (according to HPA level); discerned could be three subclasses of PKU (classic, moderate, mild) and mild HPA, which is a separate clinical entity.

The incidence of classical PKU in the Slovene population was estimated to be 1/10,000, corresponding to a carrier frequency of about 1/50. The cumulative incidence of all subtypes of PKU (classic, moderate, mild) is around 1/6,000; the incidence of mild HPA is around 1/3,500. The article also reviews the previously published studies on the genetic and phenotypic characteristics of Slovenian PKU patients, performed at the Department of Pediatric Endocrinology, Diabetes and Metabolism, University Children’s Hospital Ljubljana, in years 2008–2012. The genetic characteristics of the Slovenian PKU population were concordant with other neighbouring populations; five novel mutations of PAH gene were detected in the population.

The mandatory neonatal PKU screening in Slovenia was implemented in 1979. The dietary therapy based on a restricted Phe intake should be introduced as soon as possible after birth; in responders, BH4 treatment increases the dietary Phe tolerance.

Downloads

Download data is not yet available.

References

Scriver CR. The PAH gene, phenylketonuria, and a paradigm shift. Hum Mutat 2007; 28: 831–45.

Blau N, van Spronsen FJ, Levy HL. Phenylketonuria. Lancet 2010; 376: 1417–27.

Scriver CR, Waters PJ. Monogenic traits are not simple: lessons from phenylketonuria, Trends Genet 1999; 15: 267–72.

Weglage J, Pietsch M, Feldmann R, Koch HG, Zschocke J, Hoffmann G, et al. Normal clinical outcome in untreated subjects with mild hyperphenylalaninemia. Pediatr Res 2001; 49: 532–6.

National Institutes of Health Consensus Development Panel. National Institutes of Health Consensus Development Conference Statement: phenylketonuria: screening and management. Pediatrics 2001; 108: 972–82.

Fölling A. Über Ausscheidung von Phenylbrenztraubensäure in den Harn als Stoff wechselanomalie in Verbindung mit Inbicillität. Ztschr Physiol Chem 1934; 227: 169.

Bickel H, Gerrard JW, Hickmans EM. Infl uence of phenylalanine intake on phenylketonuria. Lancet 1953; 2: 812–9.

Guthrie R, Susi A. A simple phenylalanine method for detecting phenylketonuria in large populations of newborn infants. Pediatrics 1963; 32: 338–43.

Jeras J, Lužnik M. Oligophrenia phenylpyruvica. Zdrav Vestn 1956; 25: 460–3.

Pintar L. Rezultati zgodnjega odkrivanja bolnikov s fenilketonurijo. Zdrav Vestn 1983; 559–62.

Battelino T, Kržišnik C, Pavlin K. Early detection and follow up of children with phenylketonuria in Slovenia. Zdrav Vestn 1994; 63: 25–8.

Žerjav Tanšek M. Fenilketonurija – zgodba o uspešnem zdravljenju presnovne bolezni. Slov Pediatr 2003; 10: 225–35.

Grošelj U. Analiza gena za fenilalaninsko hidroksilazo in ugotavljanje povezave s fenotipom [doktorsko delo]. Ljubljana: Univerza v Ljubljani; 2012.

Groselj U, Tansek MZ, Kovac J, Hovnik T, Podkrajsek KT, Battelino T. Five novel mutations and two large deletions in a population analysis of the phenylalanine hydroxylase gene. Mol Genet Metab 2012; 106: 142–8.

Tansek MZ, Groselj U, Murko S, Kobe H, Lampret BR, Battelino T. Assessment of tetrahydrobiopterin (BH(4))-responsiveness and spontaneous phenylalanine reduction in a phenylalanine hydroxylase deficiency population. Mol Genet Metab 2012; 107: 37–42.

Groselj U, Tansek MZ, Podkrajsek KT, Battelino T. The IVS8–2A>G (c.913–2A>G) mutation and the PAH deficiency populations of Central Europe. J Inherit Metab Dis 2013; 36: 157.

Loeber JG. Neonatal screening in Europe; the situation in 2004. J Inherit Metab Dis 2007; 30: 430–8.

Mathias D, Bickel H. Follow-up study of 16 years neonatal screening for inborn errors of metabolism in West Germany. Eur J Pediatr 1986; 45: 310–2.

Ozalp I, Coskun T, Tokatli A, Kalkanoğlu HS, Dursun A, Tokol S et al. Newborn PKU screening in Turkey: at present and organization for future. Turk J Pediatr 2001; 43: 97–101.

Zschocke J, Mallory JP, Eiken HG, Nevin NC. Phenylketonuria and the peoples of Northern Ireland. Hum Genet 1997; 100: 189–94.

Guldberg P, Henriksen KF, Sipila I, Guttler F, de la Chapelle A. Phenylketonuria in a low incidence population: molecular characterisation of mutations in Finland. J Med Genet 1995; 32: 976–8.

Zhan JY, Qin YF, Zhao ZY. Neonatal screening for congenital hypothyroidism and phenylketonuria in China. World J Pediatr 2009; 5: 136–9.

Song F, Qu YJ, Zhang T, Jin YW, Wang H, Zheng XY. Phenylketonuria mutations in Northern China. Mol Genet Metab 2005; 86: 107–18.

Pangkanon S, Charoensiriwatana W, Janejai N, Boonwanich W, Chaisomchit S. Detection of phenylketonuria by the newborn screening program in Thailand. Southeast Asian J Trop Med Public Health 2009; 40: 525–9.

Aoki K, Ohwada M, Kitagawa T. Long-term follow-up study of patients with phenylketonuria detected by the newborn screening programme in Japan. J Inherit Metab Dis 2007; 30: 608.

Scriver CR, Hurtubise M, Konecki D, Phommarinh M, Prevost L, Erlandsen H et. al. PAHdb 2003: what a locus-specific knowledgebase can do. Hum Mutat 2003; 21: 333–44.

Avigad S, Cohen BE, Bauer S, Schwartz G, Frydman M, Woo SL, et al. A single origin of phenylketonuria in Yemenite Jews. Nature 1990; 344: 168–70.

Cali F, Ruggeri G, Vinci M, Meli C, Carducci C, Leuzzi V, et al. Exon deletions of the phenylalanine hydroxylase gene in Italian hyperphenylalaninemics. Exp Mol Med 2010; 42: 81–6.

Kozak L, Hrabincova E, Kintr J, Horky O, Zapletalova P, Blahakova I, et al. Identification and characterization of large deletions in the phenylalanine hydroxylase (PAH) gene by MLPA: evidence for both homologous and non-homologous mechanisms of rearrangement. Mol Genet Metab 2006; 89: 300–9.

Gable M, Williams M, Stephenson A, Okano Y, Ring S, Hurtubise M, et al. Comparative multiplex dosage analysis detects whole exon deletions at the phenylalanine hydroxylase locus. Hum Mutat 2003; 21: 379–86.

Desviat LR, Pérez B, Ugarte M. Identification of exonic deletions in the PAH gene causing phenylketonuria by MLPA analysis. Clin Chim Acta 2006; 373:164–7.

Thöny B, Blau N. Mutations in the BH4-metabolizing genes GTP cyclohydroalse I, 6-pyruvoyl-tetrahydropterin synthase, sepiapterin reductase, carbinolamine-4a-dehydratase, and dihydropteridine reductase genes. Hum Mutat 2006; 27: 870–8.

Nowacki PM, Byck S, Prevost L, Scriver CR. PAH Mutation Analysis Consortium Database: 1997. Prototype for relational locusspecific mutation databases. Nucleic Acids Res 1998; 26: 220–5.

Barbujani G, Goldstein DB. Africans and Asian abroad: genetic diversity in Europe. Annu Rev Genomics Hum Genet 2004; 5: 119–50.

Zschocke J. Phenylketonuria mutations in Europe. Hum Mutat 2003; 21: 345–56.

Kayaalp E, Treacy E, Waters PJ, Byck S, Nowacki P, Scriver CR, et al. Human hydroxylase mutations and hyperphenylalaninemia phenotypes: a metanalysis of genotype-phenotype correlations. Am J Hum Genet 1997; 61: 1309–17.

Eisensmith RC, Okano Y, Dasovich M, Wang T, Guttler F, Lou H, et al. Multiple Origins for Phenylketonuria in Europe. Am J Hum Genet 1992; 51: 1355–65.

Zaffanello M, Zamboni G, Maselli M, Gandini A, Camilot M, Maffeis C et al. Genetic analysis carried out on blood-spots of phenylalanine hydroxylase-deficient newborns detected by northeastern Italian neonatal screening. Genet Test 2005; 9: 133–7.

Karacic I, Meili D, Sarnavka V, Heintz C, Thöny B, Ramadza DP, et al. Genotype-predicted tetrahydrobiopterin (BH4)-responsiveness and molecular genetics in Croatian patients with phenylalanine hydroxylase (PAH) deficiency. Mol Genet Metab 2009; 97: 165–71.

Stojiljkovic M, Jovanovic J, Djordjevic M, Grkovic S, Cvorkov Drazic M, Petrucev B, et al. Molecular and phenotypic characteristics of patients with phenylketonuria in Serbia and Montenegro. Clin Genet 2006; 70: 151–5.

Aulehla-Scholz C, Heilbronner H. Mutational spectrum in German patients with phenylalanine hydroxylase deficiency. Hum Mutat 2003; 21: 399–400.

Sterl E, Paul K, Paschke E, Zschocke J, Brunner-Krainz M, Windisch E, et al. Prevalence of tetrahydrobiopterine (BH4)-responsive alleles among Austrian patients with PAH deficiency: comprehensive results from molecular analysis in 147 patients. J Inherit Metab Dis 2013; 36: 7–13.

Guttler F, Guldberg P, Henriksen KF. Mutation genotype of mentally retarded patients with phenylketonuria. Dev Brain Dysfunct 1993; 6: 92–6.

Scriver CR. Phenylketonuria—genotypes and phenotypes. N Engl J Med 1991; 324: 1280–1.

Dipple KM, McCabe ERB. Modifier genes convert ‘‘simple’’ Mendelian disorders to complex traits. Mol Genet Metab 2000; 71: 43–50.

Scriver CR. Why mutation analysis does not always predict clinical consequences: explanations in the era of genomics. J Pediatr 2002; 140: 502–6.

Scriver CR. After the genome—the phenome? J Inher Metab Dis 2004; 27: 305–17.

Weglage J, Moller HE, Wiedermann D, Cipcic-Schmidt S, Zschocke J, Ullrich K. In vivo NMR spectroscopy in patients with phenylketonuria. Clinical significance of interindividual differences in brain phenylalanine concentrations. J Inherit Metab Dis 1998; 21: 81–3.

Erlandsen H, Stevens RC. The structural basis of phenylketonuria. Mol Genet Metab 1999; 68: 103–25.

Jennings IG, Cotton RGH, Kobe B. Structural interpretation of mutations in phenylalanine hydroxylase protein aids in identifying genotype-phenotype correlations in phenylketonuria. Eur J Hum Genet 2000; 8: 683–96.

Lichter-Konecki U, Hipke CM, Konecki D. Human phenylalanine hydroxylase gene expression in kidney and other nonhepatic tissues. Mol Genet Metab 1999; 67: 308–16.

Waters PJ. How PAH gene mutations cause hyperphenylalaninemia and why mechanism matters: insights from in vitro expression. Hum Mutat 2003; 21: 357–69.

Gersting SW, Kemter KF, Staudigl M, Messing DD, Danecka MK, Lagler FB, et al. Loss of function in phenylketonuria is caused by impaired molecular motions and conformational instability. Am J Hum Genet 2008; 83: 5–17.

Muntau AC, Gersting SW. Phenylketonuria as a model for protein misfolding diseases and for the development of next generation orphan drugs for patients with inborn errors of metabolism. J Inherit Metab Dis 2010; 33: 649–58.

Knappskog PM, Eiken HG, Martinez A, Bruland O, Apold J, Flatmark T. A PKU mutation (D143G) associated with an apparent high residual enzyme activity: expression of a kinetic variant form of phenylalanine hydroxylase in three different systems. Hum Mutat 1996; 8: 236–46.

Güttler F. Hyperphenylalaninemia diagnosis and classification of the various types of phenylalanie hydroxylase deficiency in childhood. Acta Pediat Scand 1980; 280: 1–80.

Guldberg P, Rey F, Zschocke J, Romano V, François B, Michiels L, et al. A European multicenter study of phenylalanine hydroxylase deficiency: classification of 105 mutations and a general system for genotype-based prediction of metabolic phenotype. Am J Hum Genet 1998; 63: 71–9.

Rosenblatt D, Scriver CR. Heterogeneity in genetic control of phenylalanine metabolism in man. Nature 1968; 218: 677–8.

Guttler F, Guldberg P. Mutation analysis anticipates dietary requirements in phenylketonuria. Eur J Pediatr 2000; 159: 150–3.

Blau N., Erlandsen H. The metabolic and molecular bases of tetrahydrobiopterin-responsive phenylalanine hydroxylase deficiency. Mol Genet Metab 2004; 82: 101–11.

Desviat LR, Perez B, Gamez A, Sánchez A, García MJ, Martínez-Pardo M, et al. Genetic and phenotypic aspects of phenylalanine hydroxylase deficiency in Spain: molecular survey by regions. Eur J Hum Gen 1999; 7: 386–92.

Mazur A, Jarochowicz S, Sykut-Cegielska J, Gradowska W, Kwolek A, Oltarzewski M. Evaluation of somatic development in adult patients with previously undiagnosed and/or untreated phenylketonuria. Med Princ Pract 2010; 19: 46–50.

Smith I, Beasley MG, Ades AE. Intelligence and quality of dietary treatment in phenylketonuria. Arch Dis Child 1990; 65: 472–8.

Waisbren SE, Noel K, Fahrbach K, Cella C, Frame D, Dorenbaum A, et al. Phenylalanine blood levels and clinical outcomes in phenylketonuria: a systematic literature review and meta-analysis. Mol Genet Metab 2007; 92: 63–70.

Leuzzi V, Pansini M, Sechi E, Chiarotti F, Carducci C, Levi G, et al. Executive function impairment in early-treated PKU subjects with normal mental development. J Inherit Metab Dis 2004; 27: 115–25.

Albrecht J, Garbade SF, Burgard P. Neuropsychological speed tests and blood phenylalanine levels in patients with phenylketonuria: a meta-analysis. Neurosci Biobehav Rev 2009; 33: 414–21.

Weglage J, Funders B, Wilken B, Schubert D, Schmidt E, Burgard P, et al. Psychological and social findings in adolescents with phenylketonuria. Eur J Pediatr 1992; 151: 522–5.

Blau N, Belanger-Quintana A, Demirkol M, Feillet F, Giovannini M, MacDonald A, et al. Management of phenylketonuria in Europe: survey results from 19 countries. Mol Genet Metab 2010; 99: 109–15.

Fiege B, Blau N. Assessment of tetrahydrobiopterin (BH4)-responsiveness in phenylketonuria. J Pediatr 2007; 150: 627–30.

Matalon R, Michals-Matalon K, Bhatia G, Grechanina E, Novikov P, McDonald JD, et al. Large neutral amino acids in the treatment of phenylketonuria (PKU). J Inherit Metab Dis 2006; 29: 732–8.

MacDonald MJ, D’Cunha GB. A modern view of phenylalanine ammonia lyase. Biochem Cell Biol 2007; 85: 273–82.

Sarkissian CN, Gamez A. Phenylalanine ammonia lyase, enzyme substitution therapy for phenylketonuria, where are we now? Mol Genet Metab 2005; 86: 22–6.

Harding CO. Progress toward cell-directed therapy for phenylketonuria. Clin Genet 2008; 74: 97–104.

Channon S, Goodman G, Zlotowitz S, Mockler C, Lee PJ. Effects of dietary management of phenylketonuria on long-term cognitive outcome. Arch Dis Child 2007; 92: 213–8.

Rocha JC, Martins MJ. Oxidative stress in Phenylketonuria: future directions. J Inherit Metab Dis 2012; 35: 381–98.

Walter JH, White FJ, Hall SK, MacDonald A, Rylance G, Boneh A, et al. How practical are recommendations for dietary control in phenylketonuria? Lancet 2002; 360: 55–7.

Kure S, Hou DC, Ohura T, Iwamoto H, Suzuki S, Sugiyama N, et al. Tetrahydrobiopterin-responsive phenylalanine hydroxylase deficiency. J Pediatr 1999; 135: 375–8.

Trefz FK, Burton BK, Longo N, Casanova MM, Gruskin DJ, Dorenbaum A, et al. Efficacy of sapropterin dihydrochloride in increasing phenylalanine tolerance in children with phenylketonuria: a phase III, randomized, double-blind, placebo-controlled study. J Pediatr 2009; 154: 700–7.

Burton BK, Grange DK, Milanowski A, Vockley G, Feillet F, Crombez EA, et al. The response of patients with phenylketonuria and elevated serum phenylalanine to treatment with oral sapropterin dihydrochloride (6R-tetrahydrobiopterin): a phase II, multicentre, open-label, screening study. J Inherit Metab Dis 2007; 30: 700–7.

Zurflüh MR, Zschocke J, Lindner M, Feillet F, Chery C, Burlina A, et al. Molecular genetics of tetrahydrobiopterin responsive phenylalanine hydroxylase deficiency. Hum Mutat 2008; 29: 167–75.

Erlandsen H, Pey AL, Gamez A, Perez B, Desviat LR, Aguado C, et al. Correction of kinetic and stability defects by tetrahydrobiopterin in phenylketonuria patients with certain phenylalanine hydroxylase mutations. Proc Nat Acad Sci 2004; 101: 16903

Trefz FK, Scheible D, Götz H, Frauendienst-Egger G. Significance of genotype in tetrahydrobiopterin-responsive phenylketonuria. J Inherit Metab Dis 2009; 32: 22–6.

Blau N, Belanger-Quintana A, Demirkol M, Feillet F, Giovannini M, MacDonald A, et al. Optimizing the use of sapropterin (BH4) in the management of phenylketonuria. Mol Genet Metab 2009; 96: 158–63.

Koch R, Hanley W, Levy H, Matalon K, Matalon R, Rouse B, et al. The maternal phenylketonuria international study: 1984–2002. Pediatrics 2003; 112: 1523–9.

How to Cite
1.
Grošelj U, Žerjav Tanšek M, Trebušak Podkrajšek K, Battelino T. Genetic and clinical characteristics of patients with phenylketonuria in Slovenia. TEST ZdravVestn [Internet]. 1 [cited 15May2024];82(11). Available from: http://vestnik-dev.szd.si/index.php/ZdravVest/article/view/993
Section
Review