Metabolic syndrome, plasminogen activator inhibitor (pai-1) and atherosclerosis

  • Alenka Mavri
Keywords: metabolic syndrome, PAI-1, atherosclerosis, insulin resistance, obesity, adipose tissue

Abstract

Background: Metabolic syndrome is associated with high cardiovascular morbidity and mortality and its increasing prevalence is becoming one of the major health problems. Atherothrombotic process is accelerated in the metabolic syndrome and this is attributed to metabolic abnormalities, hypofibrinolysis due to increased plasma PAI-1 levels, and inflammation. Proinflammatory cytokines, particularly tumour necrosis factorα may have an important role in PAI-1 overexpression in the adipose tissue. PAI-1 might be involved in the etiopathogenesis of obesity and insulin resistance.

Conclusions: To understand a complex interplay between metabolic syndrome, PAI-1 and atherosclerosis further studies are needed.

Downloads

Download data is not yet available.

References

Reaven G. Syndrome X: 10 years after. Drugs 1999; 58 Suppl 1: 19–20.

Juhan-Vague I, Alessi MC, Vague P. Increased plasma plasminogen activator inhibitor-1 levels. A possible link between insulin resistance and atherothrombosis. Diabetologia 1991; 34: 457–2.

Kohler HP, Grant PJ. Plasminogen-activator inhibitor type 1 and coronary artery disease. N Engl J Med 2000; 342: 1792–801.

Ford ES, Giles WH, Mokdad AH. Increasing prevalence of the metabolic syndrome among u.s. adults. Diabetes Care 2004; 27: 2444–9.

Zavaroni I, Bonini L, Gasparini P, Barilli AL, Zuccarelli A, Dall’Aglio E, et al. Hyperinsulinemia in a normal population as a predictor of non-insulindependent diabetes mellitus, hypertension, and coronary heart disease: the Barilla factory revisited. Metabolism 1999; 48: 989–94.

Taegtmeyer H, McNulty P, Young ME. Adaptation and maladaptation of the heart in diabetes: Part I: general concepts. Circulation 2002; 105: 1727–33.

Marchesini G, Bugianesi E, Forlani G, Cerrelli F, Lenzi M, Manini R, et al. Nonalcoholic fatty liver, steatohepatitis, and the metabolic syndrome. Hepatology 2003; 37: 917–23.

Isomaa B, Almgren P, Tuomi T, Forsen B, Lahti K, Nissen M, et al. Cardiovascular morbidity and mortality associated with the metabolic syndrome. Diabetes Care 2001; 24: 683–9.

Lakka HM, Laaksonen DE, Lakka TA, Niskanen LK, Kumpusalo E, Tuomilehto J, Salonen JT. The metabolic syndrome and total and cardiovascular disease mortality in middle-aged men. JAMA 2002; 288: 2709–16.

Nilsson P, Nilsson JA, Hedblad B, Eriksson KF, Berglund G. Hyperinsulinaemia as long-term predictor of death and ischaemic heart disease in nondabetic men: The Malmo Preventive Project. J Intern Med 2003; 253: 136–45.

Despres JP, Lamarche B, Mauriege P, Cantin B, Dagenais GR, Moorjani S, Lupien PJ. Hyperinsulinemia as an independent risk factor for ischemic heart disease. N Engl J Med 1996; 334: 952–7.

Ding Y, Vaziri ND, Coulson R, Kamanna VS, Roh DD. Effects of simulated hyperglycemia, insulin, and glucagon on endothelial nitric oxide synthase expression. Am J Physiol Endocrinol Metab 2000; 279: E11–7.

Chen NG, Holmes M, Reaven GM. Relationship between insulin resistance, soluble adhesion molecules, and mononuclear cell binding in healthy volunteers. J Clin Endocrinol Metab 1999; 84: 3485–9.

Plutzky J, Viberti G, Haffner S. Atherosclerosis in type 2 diabetes mellitus and insulin resistance: mechanistic links and therapeutic targets. J Diabetes Complications 2002; 16: 401–15.

Hotamisligil GS, Arner P, Caro JF, Atkinson RL, Spiegelman BM. Increased adipose tissue expression of tumor necrosis factor-alpha in human obesity and insulin resistance. J Clin Invest 1995; 95: 2409–15.

Yudkin JS, Stehouwer CD, Emeis JJ, Coppack SW. C-reactive protein in healthy subjects: associations with obesity, insulin resistance, and endothelial dysfunction: a potential role for cytokines originating from adipose tissue? Arterioscler Thromb Vasc Biol 1999; 19: 972–8.

Hak AE, Stehouwer CD, Bots ML, Polderman KH, Schalkwijk CG, Westendorp IC, et al. Associations of C-reactive protein with measures of obesity, insulin resistance, and subclinical atherosclerosis in healthy, middle-aged women. Arterioscler Thromb Vasc Biol 1999; 19: 1986–91.

Festa A, D’Agostino R Jr, Howard G, Mykkanen L, Tracy RP, Haffner SM. Chronic subclinical inflammation as part of the insulin resistance syndrome: the Insulin Resistance Atherosclerosis Study (IRAS). Circulation 2000; 102: 42–7.

Hak AE, Pols HA, Stehouwer CD, Meijer J, Kiliaan AJ, Hofman A, et al. Markers of inflammation and cellular adhesion molecules in relation to insulin resistance in nondiabetic elderly: the Rotterdam study. J Clin Endocrinol Metab 2001; 86: 4398–405.

Danesh J, Whincup P, Walker M, Lennon L, Thomson A, Appleby P, et al. Low grade inflammation and coronary heart disease: prospective study and updated meta-analyses. BMJ 2000; 321: 199–204.

Ridker PM, Rifai N, Stampfer MJ, Hennekens CH. Plasma concentration of interleukin-6 and the risk of future myocardial infarction among apparently healthy men. Circulation 2000; 101: 1767–72

Ridker PM, Rifai N, Pfeffer M, Sacks F, Lepage S, Braunwald E. Elevation of tumor necrosis factor-alpha and increased risk of recurrent coronary events after myocardial infarction. Circulation 2000; 101: 2149–53.

Malik I, Danesh J, Whincup P, Bhatia V, Papacosta O, Walker M, et al. Soluble adhesion molecules and prediction of coronary heart disease: a prospective study and meta-analysis. Lancet 2001; 358: 971–6.

Mohamed-Ali V, Goodrick S, Rawesh A, Miles JM, Katz D, Yudkin JS, Coppack SW. Human subcutaneous adipose tissue secretes interleukin-6 but not tumour necrosis factor-α in vivo. J Clin Endocrinol Metab 1997; 82: 4196–200.

Moreno PR, Murcia AM, Palacios IF, Leon MN, Bernardi VH, Fuster V, Fallon JT. Coronary composition and macrophage infiltration in atherectomy specimens from patients with diabetes mellitus. Circulation 2000; 102: 2180–4.

Hamsten A, de Faire U, Walldius G, Dahlen G, Szamosi A, Landou C, et al. Plasminogen activator inhibitor in plasma: Risk factor for recurrent myocardial infarction. Lancet 1987; II: 3–9.

Thogersen AM, Jansson JH, Boman K, Nilsson TK, Weinehall L, Huhtasaari F, Hallmans G. High plasminogen activator inhibitor and tissue plasminogen activator levels in plasma precede a first acute myocardial infarction in both men and women: evidence for the fibrinolytic system as an independent primary risk factor. Circulation 1998; 98: 2241–7.

Ploplis VA, Castellino FJ. Attenuation of neointima formation following arterial injury in PAI-1 deficient mice. Ann NY Acad Sci 2001; 936: 466–8.

DeYoung MB, Tom C, Dichek DA. Plasminogen activator inhibitor type 1 increases neointima formation in balloon-injured rat carotid arteries. Circulation 2001; 104: 1972–1.

Peng L, Bhatia N, Parker AC, Zhu Y, Fay WP. Endogenous vitronectin and plasminogen activator inhibitor-1 promote neointima formation in murine carotid arteries. Arterioscler Thromb Vasc Biol 2002; 22: 934–9.

De Waard V, Arkenbout EK, Carmeliet P, Lindner V, Pannekoek H. Plasminogen activator inhibitor 1 and vitronectin protect against stenosis in a murine carotid artery ligation model. Arterioscler Thromb Vasc Biol 2002; 22: 1978–83.

Konstantinides S, Schäfer K, Loskutoff DJ. Do PAI-1 and vitronectin promote or inhibit neointima formation? The exact role of the fibrinolytic system in vascular remodeling remains uncertain. Arterioscler Thromb Vasc Biol 2002; 22: 1943–5.

Chomiki N, Henry M, Alessi MC, Anfosso F, Juhan-Vague I. Plasminogen activator inhibitor-1 expression in human liver and healthy or atherosclerotic vessel walls. Thromb Haemost 1994; 72: 44–53.

Sobel BE, Woodcock-Mitchell J, Schneider DJ, Holt RE, Marutsuka K, Gold H. Increased plasminogen activator inhibitor type 1 in coronary artery atherectomy specimens from type 2 diabetic compared with nondiabetic patients: a potential factor predisposing to thrombosis and its persistence. Circulation 1998; 97: 2213–21.

Mavri A, Stegnar M, Sentocnik JT, Videcnik V. Impact of weight reduction on early carotid atherosclerosis in obese premenopausal women. Obes Res 2001; 9: 511–6.

Vague Ph, Juhan-Vague I, Aillaud MF, Badier C, Viard R, Alessi MC, Collen D. Correlation between blood fibrinolytic activity, PA-inhibitor level, plasma insulin level and relative body weight in normal and obese subjects. Metabolism 1986; 35: 250–3.

Potter van Loon BJ, Kluft C, Radder JK, Blankenstein MA, Meinders AE. The cardiovascular risk factor plasminogen activator inhibitor type 1 is related to insulin resistance. Metabolism 1993; 42: 945–9.

Haffner S, Mykkänen L, Stern MP, Valdez RA, Heisserman JA, Bowsher RR. Relationship of proinsulin and insulin to cardiovascular risk factors in non diabetic subjects. Diabetes 1993; 42: 1297–302.

Cigolini M, Targher G, Bergamo Andreis IA, Tonoli M, Agostino G, De Sandre G. Visceral fat accumulation and its relation to plasma hemostatic factors in healthy men. Arterioscler Thromb Vasc Biol 1996; 16: 368–74.

Gray RP, Panahloo A, Mohamed-Ali V, Patterson DL, Yudkin JS. Proinsulinlike molecules and plasminogen activator inhibitor type 1 (PAI-1) activity in diabetic and non-diabetic subjects with and without myocardial infarction. Atherosclerosis 1997; 130: 171–8.

Festa A, D’Agostino R, Mykkänen L, Tracy R, Howard BV, Haffner SM. Lowdensity lipoprotein particle size is inversely related to plasminogen activator inhibitor-1 levels. The Insulin Resistance Atherosclerosis Study. Arterioscler Thromb Vasc Biol 1999; 19: 605–10.

Meigs JB, Mittleman MA, Nathan D, Tofler GH, Singer DE, Murphy-Sheehy PM, et al. Hyperinsulinemia, hyperglycemia and impaired hemostasis. The Framingham Offspring Study. JAMA 2000; 283: 221–8.

Mavri A, Stegnar M, Krebs M, Sentocnik JT, Geiger M, Binder BR. Impact of adipose tissue on plasma plasminogen activator inhibitor-1 in dieting obese women. Arterioscler Thromb Vasc Biol 1999; 19: 1582–7.

Janand-Delenne B, Chagnaud C, Raccah D, Alessi MC, Juhan-Vague I, Vague P. Visceral fat as a main determinant of plasminogen activator inhibitor 1 level in women. Int J Obes Relat Metab Disord 1998; 22: 312–7.

Nagi DK, Yudkin JS. Effects of metformin on insulin resistance, risk factors for cardiovascular disease, and plasminogen activator inhibitor in NIDDM subjects: a study of two ethnic groups. Diabetes Care 1993; 16: 621–9.

Kruszynska YT, Yu JG, Olefsky JM, Sobel BE. Effects of troglitazone on blood concentrations of plasminogen activator inhibitor 1 in patients with type 2 diabetes and in lean and obese normal subjects. Diabetes 2000; 49: 633–9.

Alessi MC, Juhan-Vague I, Kooistra T, Declerck PJ, Collen D. Insulin stimulates the synthesis of plasminogen activator inhibitor 1 by the human hepatocellular cell line Hep G2. Thromb Haemostas 1988; 60: 491–4.

Morange PE, Aubert J, Peiretti F, Vague P, Lijnen HR, Verdier M, et al. Glucocorticoids and insulin promote plasminogen activator inhibitor 1 production by human adipose tissue. Diabetes 1999; 48: 890–5.

Nordt TK, Klassen KJ, Schneider DJ, Sobel BE. Augmentation of synthesis of plasminogen activator inhibitor type-1 in arterial endothelial cells by glucose and its implications for local fibrinolysis. Arterioscler Thromb 1993; 13: 1822–8.

Stiko-Rahm A, Wiman B, Hamsten A, Nilsson J. Secretion of plasminogen activator inhibitor-1 from cultured human umbilical vein endothelial cells is induced by very low density lipoprotein. Arteriosclerosis 1990; 10: 1067– 73.

Nilsson L, Banfi C, Diczfalusy U, Tremoli E, Hamsten A, Eriksson P. Unsaturated fatty acids increase plasminogen activator inhibitor-1 expression in endothelial cells. Arterioscler Thromb Vasc Biol 1998; 18: 1679–85.

Vaughan D. Angiotensin and vascular fibrinolytic balance. Am J Hypertens 2002; 15: 3S–8S.

Medvešček M, Keber D, Stegnar M, Borovničar A. Plasminogen activator inhibitor 1 response to a carbohydrate meal in obese subjects. Fibrinolysis 1990; 4 Suppl 2: 89–90.

Potter van Loon BJ, de Bart ACW, Radder JK, Frölich M, Kluft C, Meinders AE. Acute exogenous hyperinsulinaemia does not result in elevation of plasma plasminogen activator inhibitor-1 (PAI-1) in humans. Fibrinolysis 1990; 4 Suppl 2: 93–4.

Samad F, Yamamoto K, Loskutoff DJ. Distribution and regulation of plasminogen activator inhibitor-1 in murine adipose tissue in vivo. Induction by tumor necrosis factor-alpha and lipopolysaccharide. J Clin Invest 1996; 97: 37–46.

Hotamisligil GS, Peraldi P, Budavari A, Ellis R, White MF, Spiegelman BM. IRS-1-mediated inhibition of insulin receptor tyrosine kinase activity in TNF-α and obesity-induced insulin resistance. Science 1996; 271: 665–8.

Samad F, Uysal T, Wiesbrock S, Pandey M, Hotamisligil S, Loskutoff J. Tumor necrosis factor α is a key component in the obesity-linked elevation of plasminogen activator inhibitor 1. Proc Natl Acad Sci USA 1999; 96: 6902–7.

Plomgaard P, Keller P, Keller C, Pedersen BK. TNF-α, but not IL-6, stimulates plasminogen activator inhibitor 1 (PAI-1) expression in human subcutaneous adipose tissue. J Appl Physiol (January 27, 2005). doi:10.1152/japplphysiol.01220.2004

Alessi MC, Peiretti F, Morange P, Henry M, Nalbone G, Juhan-Vague I. Production of plasminogen activator inhibitor-1 by human adipose tissue: possible link between visceral fat accumulation and vascular disease. Diabetes 1997; 46: 860–7.

Mavri A, Alessi MC, Bastelica D, Geel- Georgelin O, Fina F, Sentocnik JT, et al. Subcutaneous abdominal, but not femoral fat expression of plasminogen activator inhibitor-1 (PAI-1) is related to plasma PAI-1 levels and insulin resistance and decreases after weight loss. Diabetologia 2001; 44: 2025–31.

Bastelica D, Mavri A, Verdier M, Bergoin M, Berthet B, Juhan-Vague I, Alessi MC. Relationships between fibrinolytic and inflammatory parameters in human adpose tissue: strong contribution of TNFα receptors to PAI-1 levels. Thromb Haemost 2002; 88: 481–7.

Luyckx FH, Lefebvre PJ, Scheen AJ. Non-alcoholic steatohepatitis: association with obesity and insulin resistance, and influence of weight loss. Diabetes Metab 2000; 26: 98–106.

Alessi MC, Bastelica D, Mavri A, Morange P, Berthet B, Grino M, JuhanVague I. Plasma PAI-1 levels are more strongly related to liver steatosis than to adipose tissue accumulation. Arterioscler Thromb Vasc Biol 2003; 23: 1262–8.

Ravussin E, Smith SR. Increased fat intake, impaired fat oxidation, and failure of fat cell proliferation result in ectopic fat storage, insulin resistance, and type 2 diabetes mellitus. Ann NY Acad Sci 2002; 967: 363–78.

Unger RH, Zhou YT. Lipotoxicity of beta-cells in obesity and in other causes of fatty acid spillover. Diabetes 2001; 50 Suppl 1: 118–21.

Morange PE, Lijnen HR, Alessi MC, Kopp F, Collen D, Juhan-Vague I. Influence of PAI-1 on adipose tissue growth and metabolic parameters in a murine model of diet-induced obesity. Arterioscler Thromb Vasc Biol 2000; 20: 1150–4.

Lijnen HR, Maquoi E, Morange P, Voros G, Van Hoef B, Kopp F, et al. Nutritionally induced obesity is attenuated in transgenic mice overexpressing plasminogen activator inhibitor-1. Arterioscler Thromb Vasc Biol 2003; 23: 78–84.

Lopez-Alemany R, Redondo JM, Nagamine Y, Munoz-Canoves P. Plasminogen activator inhibitor type-1 inhibits insulin signaling by competing with alphavbeta3 integrin for vitronectin binding. Eur J Biochem 2003; 270: 814– 21.

Festa A, D’Agostino R, Tracy RP, Haffner SM. Elevated levels of acute-phase proteins and plasminogen activator inhibitor-1 predict the development of

type 2 diabetes. The Insulin Resistance Atherosclerosis Study. Diabetes 2002; 51: 1131–7.

Crandall DL, Elokdah H, Di L, Hennan JK, Gorlatova NV, Lawrence DA. Characterization and comparative evaluation of a structurally unique PAI-1 inhibitor exhibiting oral in-vivo efficacy. J Thromb Haemost 2004; 2: 1422–8.

How to Cite
1.
Mavri A. Metabolic syndrome, plasminogen activator inhibitor (pai-1) and atherosclerosis. TEST ZdravVestn [Internet]. 1 [cited 5Aug.2024];74(6). Available from: http://vestnik-dev.szd.si/index.php/ZdravVest/article/view/2121
Section
Review article

Most read articles by the same author(s)